【深度学习|学习笔记】从背景→公式→性质→梯度→何时用哪一个→数值稳定性与常见坑方面描述sigmoid和softmax函数!

【深度学习|学习笔记】从背景→公式→性质→梯度→何时用哪一个→数值稳定性与常见坑方面描述sigmoid和softmax函数!

【深度学习|学习笔记】从背景→公式→性质→梯度→何时用哪一个→数值稳定性与常见坑方面描述sigmoid和softmax函数!



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/148877490


1) 背景与直觉

  • sigmoid 用于“二分类/单神经元输出”的概率映射:把一个实数 logit 映到 (0,1)。
  • softmax 用于“多分类(互斥)/多神经元输出”的概率归一化:把一个 logits 向量 映到 K 维概率单纯形(各分量∈(0,1),且总和=1)。

从优化角度看:

  • 二分类逻辑回归 ←→ sigmoid + 二分类交叉熵。
  • 多分类逻辑回归 ←→ softmax + 多分类交叉熵。

2) 定义与公式

Sigmoid(logistic 函数)

定义:

在这里插入图片描述

性质:
  • 输出范围 (0,1);对称点在 x = 0 ⇒ σ ( 0 ) = 0.5 x=0 ⇒ σ(0)=0.5 x=0σ(0)=0.5;单调递增、两端饱和。
导数:

在这里插入图片描述

导数:损失(带 logits 的二分类交叉熵)(数值稳定写法,标签 y ∈ 0 , 1 y∈{0,1} y0,1,logit = z)

在这里插入图片描述

Softmax

  • 对 K 维 logits 向量 z = ( z 1 , … , z K ) z=(z_1,…,z_K) z=(z1,,zK)
    在这里插入图片描述
性质:
  • 输出为概率分布,所有分量相加为 1。
  • 雅可比矩阵(梯度):

在这里插入图片描述

  • 损失(多分类交叉熵)(数值稳定写法,真类索引为 y y y):
    在这里插入图片描述
  • 常用 log-sum-exp trick:先减去 m a x ( z ) max(z)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想努力的小土博

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值