【学术会议前沿信息|科研必备】EI/Scopus检索|检测技术、智能系统、科技创新、机械控制、计算机工程、计算机科学与管理科技多领域国际会议征稿开启!
【学术会议前沿信息|科研必备】EI/Scopus检索|检测技术、智能系统、科技创新、机械控制、计算机工程、计算机科学与管理科技多领域国际会议征稿开启!
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz
前言
- 英雄城南昌、花城广州、热带西双版纳、鹭岛厦门,四座特色城市邀您共赴学术盛会,用智慧点亮科研梦想!
🔍 第五届检测技术与智能系统国际学术会议(DTIS 2025)
- The 5th International Conference on Detection Technology and Intelligence System
- 时间地点:2025年12月12-14日丨中国·南昌
- 亮点:JPCS出版检索稳定可靠,聚焦智能检测与系统优化,为工程技术领域学者提供深度交流平台!
- 检索:JPCS出版,提交EI Compendex、Scopus检索
- 适合投稿人群:检测技术与智能系统领域硕博生,致力于传感技术与智能算法创新的研究者!
- 🔍 DTIS 2025 - 线性概念漂移检测——这个示例实现了一种基于线性系数分析的概念漂移检测方法,可以用于监控传感器数据分布变化或模型性能衰减。
import numpy as np
from sklearn.linear_model import LinearRegression
from scipy import stats
def linear_drift_detector(X_train, y_train, X_prod, y_prod, alpha=0.05):
"""
基于线性回归系数分析的概念漂移检测器
通过比较训练数据和线上数据的模型系数差异来检测概念漂移[citation:1]
参数:
X_train: 训练数据特征
y_train: 训练数据标签
X_prod: 线上数据特征
y_prod: 线上数据标签
alpha: 显著性水平
返回:
drift_detected: 是否检测到概念漂移
diagnostics: 诊断报告
"""
# 训练两个线性模型
model_train = LinearRegression().fit(X_train, y_train)
model_prod = LinearRegression().fit(X_prod, y_prod)
# 获取系数
coef_train = np.append(model_train.intercept_, model_train.coef_)
coef_prod = np.append(model_prod.intercept_, model_prod.coef_)
# 计算系数差异
coef_diff = coef_prod - coef_train
# 计算L2距离
l2_distance = np.linalg.norm(coef_diff)
# 计算标准误差(简化版本)
n_train, n_prod = len(X_train), len(X_prod)
y_pred_train = model_train.predict(X_train)
y_pred_prod = model_prod.predict(X_prod)
mse_train = np.mean((y_train - y_pred_train) ** 2)
mse_prod = np.mean((y_prod - y_pred_prod) ** 2)
# 计算Z统计量和p值
p_values = []
for i in range(len(coef_train)):
# 简化的标准误差估计
se_combined = np.sqrt(mse_train/n_train + mse_prod/n_prod)
z_value = coef_diff[i] / se_combined if se_combined > 0 else 0
p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value)))
p_values.append(p_value)
# 判断是否发生概念漂移
significant_drift = any(p < alpha for p in p_values)
large_distance = l2_distance > 1.0 # 可调整的阈值
drift_detected = significant_drift or large_distance
diagnostics = {
'drift_detected': drift_detected,
'l2_distance': l2_distance,
'p_values': p_values,
'coef_train': coef_train,
'coef_prod': coef_prod,
'significant_features': [i for i, p in enumerate(p_values) if p < alpha]
}
return drift_detected, diagnostics
# 示例使用
def demonstrate_drift_detection():
"""演示概念漂移检测"""
np.random.seed(42)
# 生成训练数据(正常关系)
n_train = 1000
X_train = np.random.randn(n_train, 3)
y_train = 2.0 * X_train[:, 0] - 1.5 * X_train[:, 1] + 3.0 * X_train[:, 2] + np.random.randn(n_train) * 0.1
# 生成线上数据(关系发生变化 - 概念漂移)
n_prod = 800
X_prod = np.random.randn(n_prod, 3)
# 改变特征关系模拟概念漂移
y_prod = 3.0 * X_prod[:, 0] - 0.5 * X_prod[:, 1] + 2.5 * X_prod[:, 2] + np.random.randn(n_prod) * 0.1
# 检测概念漂移
drift_detected, report = linear_drift_detector(X_train, y_train, X_prod, y_prod)
print(f"概念漂移检测结果: {drift_detected}")
print(f"系数L2距离: {report['l2_distance']:.4f}")
print(f"显著变化的特征: {report['significant_features']}")
return drift_detected, report
# 运行示例
# drift_detected, report = demonstrate_drift_detection()
💡 第七届国际科技创新学术交流大会(IAECST 2025)
- 2025 7th International Academic Exchange Conference on Science and Technology Innovation
- 时间地点:2025年12月19-21日丨中国·广州
- 亮点:IEEE出版保障高效检索,汇聚通信、新能源等多领域创新智慧,推动产学研深度融合!
- 检索:IEEE出版,收录IEEE Xplore,提交EI、Scopus检索
- 适合投稿人群:科技创新领域硕博生,专注跨学科研究与实践应用的复合型人才!
- 💡 IAECST 2025 - 模块化机器遗忘学习——这个示例展示了一种新颖的机器遗忘学习方法,可以在不重新训练整个模型的情况下,快速移除对特定类别或数据点的知识。
import numpy as np
from sklearn.preprocessing import LabelBinarizer
class MPRUForgetting:
"""
模块化投影再分布遗忘实现
基于MPRU方法,通过输出层的投影和再分布实现高效的机器遗忘[citation:4]
"""
def __init__(self, base_model, classes):
self.base_model = base_model
self.classes = classes
self.n_classes = len(classes)
self.projection_matrix = None
self.is_fitted = False
# 初始化标签二值化器
self.label_binarizer = LabelBinarizer()
self.label_binarizer.fit(classes)
def compute_projection_matrix(self, X, y, class_to_forget):
"""
计算投影矩阵以实现目标类的遗忘
"""
# 获取基模型的预测概率
base_proba = self.base_model.predict_proba(X)
# 将目标类概率投影到其他类别
forget_idx = list(self.classes).index(class_to_forget)
remaining_idxs = [i for i in range(self.n_classes) if i != forget_idx]
# 构建投影矩阵(简化实现)
n_remaining = len(remaining_idxs)
self.projection_matrix = np.eye(self.n_classes)
# 将目标类的概率均匀分布到其他类别
redistribution_weight = 1.0 / n_remaining if n_remaining > 0 else 0
for i in remaining_idxs:
self.projection_matrix[forget_idx, i] = redistribution_weight
# 目标类概率置零
self.projection_matrix[forget_idx, forget_idx] = 0
self.is_fitted = True
return self.projection_matrix
def predict_proba(self, X):
"""
使用投影矩阵进行预测,实现遗忘效果
"""
if not self.is_fitted:
raise ValueError("MPRU模型尚未训练,请先调用compute_projection_matrix")
base_proba = self.base_model.predict_proba(X)
# 应用投影矩阵
modified_proba = base_proba @ self.projection_matrix.T
# 确保概率归一化
row_sums = modified_proba.sum(axis=1, keepdims=True)
modified_proba = modified_proba / row_sums
return modified_proba
def get_forgetting_performance(self, X_test, y_test, class_to_forget):
"""
评估遗忘性能:目标类应该被"遗忘"(随机猜测水平)
"""
modified_proba = self.predict_proba(X_test)
# 计算目标类的准确率(应该接近随机猜测)
forget_mask = y_test == class_to_forget
if np.any(forget_mask):
forget_proba = modified_proba[forget_mask]
# 目标类的平均预测概率
forget_idx = list(self.classes).index(class_to_forget)
avg_target_proba = np.mean(forget_proba[:, forget_idx])
random_guess = 1.0 / self.n_classes
forgetting_ratio = avg_target_proba / random_guess
return forgetting_ratio, avg_target_proba
else:
return 1.0, 0.0
# 示例使用
def demonstrate_machine_unlearning():
"""演示机器遗忘学习"""
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
# 生成示例数据
X, y = make_classification(
n_samples=1000, n_features=20, n_classes=3,
n_informative=15, random_state=42
)
classes = [0, 1, 2]
# 训练基模型
base_model = RandomForestClassifier(n_estimators=100, random_state=42)
base_model.fit(X, y)
# 初始化MPRU遗忘器
forgetter = MPRUForgetting(base_model, classes)
# 选择要遗忘的类别
class_to_forget = 1
forgetter.compute_projection_matrix(X, y, class_to_forget)
# 评估遗忘效果
forgetting_ratio, avg_proba = forgetter.get_forgetting_performance(
X, y, class_to_forget
)
print(f"目标类 {class_to_forget} 的遗忘效果:")
print(f"平均预测概率: {avg_proba:.4f}")
print(f"随机猜测水平: {1/len(classes):.4f}")
print(f"遗忘比率: {forgetting_ratio:.4f} (越接近1.0效果越好)")
return forgetter
# 运行示例
# forgetter = demonstrate_machine_unlearning()
⚙️ 第八届机械、控制与计算机工程国际学术会议(ICMCCE 2025)
- 2025 8th International Conference on Mechanical, Control and Computer Engineering
- 时间地点:2025年12月26-28日丨中国·西双版纳
- 亮点:会议论文集出版检索稳定,聚焦机械与控制工程前沿,促进热带风光中的学术灵感碰撞!
- 检索:Conference Proceeding出版,提交EI Compendex、Scopus检索
- 适合投稿人群:机械与控制工程领域硕博生,致力于智能制造与系统优化的工程师学者!
- ⚙️ ICMCCE 2025 - 非线性系统SDRE控制——这个示例实现了状态相关Riccati方程控制方法,用于处理机械系统中的非线性控制问题。
import numpy as np
from scipy.linalg import solve_continuous_are
class SDREController:
"""
状态相关Riccati方程(SDRE)控制器
用于非线性系统的最优控制[citation:7]
"""
def __init__(self, A_func, B_func, Q, R):
"""
参数:
A_func: 状态相关A矩阵函数 A(x)
B_func: 状态相关B矩阵函数 B(x)
Q: 状态权重矩阵
R: 控制权重矩阵
"""
self.A_func = A_func
self.B_func = B_func
self.Q = Q
self.R = R
def solve_sdre(self, x):
"""
在给定状态x下求解SDRE
"""
A = self.A_func(x)
B = self.B_func(x)
try:
# 求解连续时间代数Riccati方程
P = solve_continuous_are(A, B, self.Q, self.R)
# 计算反馈增益矩阵 K = R^{-1} B^T P
K = np.linalg.solve(self.R, B.T @ P)
return K, P
except np.linalg.LinAlgError:
# 如果求解失败,返回零增益
print("SDRE求解失败,使用零增益")
return np.zeros((B.shape[1], A.shape[0])), self.Q
def compute_control(self, x, x_desired=None):
"""
计算控制输入 u = -K(x) * (x - x_desired)
"""
if x_desired is None:
x_desired = np.zeros_like(x)
K, _ = self.solve_sdre(x)
# 控制律: u = -K(x) * (x - x_desired)
u = -K @ (x - x_desired)
return u
def simulate_system(self, x0, dt, T, system_dynamics, x_ref=None):
"""
模拟SDRE控制系统
"""
n_steps = int(T / dt)
n_states = len(x0)
n_controls = self.R.shape[0]
# 初始化轨迹数组
x_traj = np.zeros((n_steps, n_states))
u_traj = np.zeros((n_steps, n_controls))
x_current = x0.copy()
for k in range(n_steps):
# 存储当前状态
x_traj[k] = x_current
# 计算参考状态
if x_ref is not None:
x_desired = x_ref(k * dt)
else:
x_desired = np.zeros_like(x_current)
# 计算控制输入
u = self.compute_control(x_current, x_desired)
u_traj[k] = u
# 系统演化
x_next = system_dynamics(x_current, u, dt)
x_current = x_next
return x_traj, u_traj
# 示例:倒立摆系统的SDRE控制
def inverted_pendulum_example():
"""
倒立摆系统的SDRE控制示例
"""
# 系统参数
g = 9.81 # 重力加速度
l = 1.0 # 摆杆长度
m = 1.0 # 摆球质量
b = 0.1 # 阻尼系数
def A_func(x):
"""状态相关A矩阵"""
theta, theta_dot = x[0], x[1]
A = np.array([
[0, 1],
[g/l * np.cos(theta), -b/(m*l*l)]
])
return A
def B_func(x):
"""状态相关B矩阵"""
B = np.array([[0], [1/(m*l*l)]])
return B
# 权重矩阵
Q = np.diag([10.0, 1.0]) # 状态权重
R = np.array([[0.1]]) # 控制权重
# 创建SDRE控制器
controller = SDREController(A_func, B_func, Q, R)
def pendulum_dynamics(x, u, dt):
"""倒立摆动力学"""
theta, theta_dot = x[0], x[1]
# 系统动力学
theta_ddot = (g/l * np.sin(theta) - b/(m*l*l) * theta_dot + u[0]/(m*l*l))
# 欧拉积分
theta_next = theta + theta_dot * dt
theta_dot_next = theta_dot + theta_ddot * dt
return np.array([theta_next, theta_dot_next])
# 初始状态(偏离平衡位置)
x0 = np.array([0.5, 0.0]) # 30度偏移,零速度
# 模拟
dt, T = 0.01, 5.0
x_traj, u_traj = controller.simulate_system(
x0, dt, T, pendulum_dynamics,
x_ref=lambda t: np.array([0.0, 0.0]) # 目标:直立位置
)
print("SDRE控制模拟完成")
print(f"最终状态: theta={x_traj[-1, 0]:.4f}, theta_dot={x_traj[-1, 1]:.4f}")
print(f"控制输入范围: [{u_traj.min():.2f}, {u_traj.max():.2f}]")
return controller, x_traj, u_traj
# 运行示例
# controller, x_traj, u_traj = inverted_pendulum_example()
💻 第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
- 2025 6th International Conference on Computer Science and Management Technology
- 时间地点:2025年12月26-28日丨中国·厦门
- 亮点:ACM出版检索快速稳定,推动计算机技术与管理的跨界融合,搭建产学研协同创新平台!
- 检索:ACM出版,提交EI Compendex、Scopus检索
- 适合投稿人群:计算机科学与管理科技领域硕博生,专注信息技术与管理创新结合的研究者!
- 💻 ICCSMT 2025 - 高效任务分配算法——这个示例实现了匈牙利算法的优化版本,用于解决计算机系统和管理科学中的资源分配问题。
import numpy as np
class OptimizedHungarian:
"""
优化版匈牙利算法实现
用于解决最优任务分配问题[citation:6]
"""
def __init__(self, cost_matrix):
self.cost_matrix = cost_matrix.copy()
self.n, self.m = cost_matrix.shape
self.row_covered = np.zeros(self.n, dtype=bool)
self.col_covered = np.zeros(self.m, dtype=bool)
self.starred = np.zeros_like(cost_matrix, dtype=bool)
self.primed = np.zeros_like(cost_matrix, dtype=bool)
def solve(self):
"""
执行匈牙利算法求解最优分配
"""
# 步骤1: 行归约
self._reduce_rows()
# 步骤2: 初始分配
self._find_initial_assignment()
while not self._is_solution_complete():
# 步骤3: 覆盖所有零元素
self._cover_zeros()
# 如果没有找到完整解,调整矩阵
if not self._is_solution_complete():
self._adjust_matrix()
return self._get_assignment()
def _reduce_rows(self):
"""行归约:每行减去该行最小值"""
for i in range(self.n):
min_val = np.min(self.cost_matrix[i])
self.cost_matrix[i] -= min_val
def _reduce_cols(self):
"""列归约:每列减去该列最小值"""
for j in range(self.m):
min_val = np.min(self.cost_matrix[:, j])
self.cost_matrix[:, j] -= min_val
def _find_initial_assignment(self):
"""寻找初始分配"""
# 在每行和每列中寻找独立的零元素
for i in range(self.n):
for j in range(self.m):
if (self.cost_matrix[i, j] == 0 and
not self.row_covered[i] and
not self.col_covered[j]):
self.starred[i, j] = True
self.row_covered[i] = True
self.col_covered[j] = True
# 重置覆盖标记
self.row_covered.fill(False)
self.col_covered.fill(False)
def _cover_zeros(self):
"""覆盖所有零元素"""
# 覆盖包含星号零的列
for j in range(self.m):
for i in range(self.n):
if self.starred[i, j]:
self.col_covered[j] = True
break
covered_cols = np.sum(self.col_covered)
if covered_cols >= min(self.n, self.m):
return
# 寻找未覆盖的零并primed
while True:
zero_found = False
for i in range(self.n):
for j in range(self.m):
if (self.cost_matrix[i, j] == 0 and
not self.row_covered[i] and
not self.col_covered[j]):
self.primed[i, j] = True
# 检查该行是否有星号零
star_col = -1
for k in range(self.m):
if self.starred[i, k]:
star_col = k
break
if star_col != -1:
self.row_covered[i] = True
self.col_covered[star_col] = False
else:
self._augment_path(i, j)
return
zero_found = True
break
if zero_found:
break
if not zero_found:
self._adjust_matrix()
return
def _augment_path(self, start_i, start_j):
"""增广路径"""
path = [(start_i, start_j)]
while True:
# 在当前行找星号零
star_i, star_j = -1, -1
for j in range(self.m):
if self.starred[path[-1][0], j]:
star_i, star_j = path[-1][0], j
break
if star_i == -1:
break
path.append((star_i, star_j))
# 在当前列找primed零
prime_i, prime_j = -1, -1
for i in range(self.n):
if self.primed[i, star_j]:
prime_i, prime_j = i, star_j
break
if prime_i == -1:
break
path.append((prime_i, prime_j))
# 增广路径:primed变starred,starred变unstarred
for i, j in path:
if self.starred[i, j]:
self.starred[i, j] = False
else:
self.starred[i, j] = True
# 重置
self.primed.fill(False)
self.row_covered.fill(False)
self.col_covered.fill(False)
def _adjust_matrix(self):
"""调整成本矩阵"""
# 找到最小的未覆盖值
min_val = np.inf
for i in range(self.n):
for j in range(self.m):
if not self.row_covered[i] and not self.col_covered[j]:
min_val = min(min_val, self.cost_matrix[i, j])
# 调整矩阵
for i in range(self.n):
if self.row_covered[i]:
self.cost_matrix[i] += min_val
for j in range(self.m):
if not self.col_covered[j]:
self.cost_matrix[:, j] -= min_val
def _is_solution_complete(self):
"""检查是否找到完整解"""
return np.sum(self.starred) == min(self.n, self.m)
def _get_assignment(self):
"""获取最终分配结果"""
assignment = []
total_cost = 0
for i in range(self.n):
for j in range(self.m):
if self.starred[i, j]:
assignment.append((i, j))
total_cost += self.cost_matrix[i, j] if hasattr(self, 'original_cost') else 0
break
return assignment, total_cost
def demonstrate_task_allocation():
"""演示任务分配"""
# 创建成本矩阵(工作人员 vs 任务)
np.random.seed(42)
n_workers = 4
n_tasks = 4
# 成本矩阵:worker[i]完成task[j]的成本
cost_matrix = np.random.randint(10, 50, size=(n_workers, n_tasks))
print("任务分配成本矩阵:")
print(cost_matrix)
# 求解最优分配
hungarian = OptimizedHungarian(cost_matrix)
assignment, total_cost = hungarian.solve()
print(f"\n最优分配方案:")
for worker_idx, task_idx in assignment:
cost = cost_matrix[worker_idx, task_idx]
print(f"工作人员 {worker_idx} -> 任务 {task_idx} (成本: {cost})")
print(f"总成本: {total_cost}")
return assignment, total_cost
# 运行示例
# assignment, total_cost = demonstrate_task_allocation()
- 🎉 四城联袂呈现学术盛宴,投稿通道全面开启!快来与全球精英切磋交流,让您的研究成果在国际舞台绽放独特光彩!
1429

被折叠的 条评论
为什么被折叠?



