【学术会议前沿信息|科研必备】EI/Scopus检索|检测技术、智能系统、科技创新、机械控制、计算机工程、计算机科学与管理科技多领域国际会议征稿开启!

【学术会议前沿信息|科研必备】EI/Scopus检索|检测技术、智能系统、科技创新、机械控制、计算机工程、计算机科学与管理科技多领域国际会议征稿开启!

【学术会议前沿信息|科研必备】EI/Scopus检索|检测技术、智能系统、科技创新、机械控制、计算机工程、计算机科学与管理科技多领域国际会议征稿开启!



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz


前言

  • 英雄城南昌、花城广州、热带西双版纳、鹭岛厦门,四座特色城市邀您共赴学术盛会,用智慧点亮科研梦想!

🔍 第五届检测技术与智能系统国际学术会议(DTIS 2025)

  • The 5th International Conference on Detection Technology and Intelligence System
  • 时间地点:2025年12月12-14日丨中国·南昌
  • 亮点:JPCS出版检索稳定可靠,聚焦智能检测与系统优化,为工程技术领域学者提供深度交流平台!
  • 检索:JPCS出版,提交EI Compendex、Scopus检索
  • 适合投稿人群:检测技术与智能系统领域硕博生,致力于传感技术与智能算法创新的研究者!
  • 🔍 DTIS 2025 - 线性概念漂移检测——这个示例实现了一种基于线性系数分析的概念漂移检测方法,可以用于监控传感器数据分布变化或模型性能衰减。
import numpy as np
from sklearn.linear_model import LinearRegression
from scipy import stats

def linear_drift_detector(X_train, y_train, X_prod, y_prod, alpha=0.05):
    """
    基于线性回归系数分析的概念漂移检测器
    通过比较训练数据和线上数据的模型系数差异来检测概念漂移[citation:1]
    
    参数:
        X_train: 训练数据特征
        y_train: 训练数据标签
        X_prod: 线上数据特征  
        y_prod: 线上数据标签
        alpha: 显著性水平
    
    返回:
        drift_detected: 是否检测到概念漂移
        diagnostics: 诊断报告
    """
    # 训练两个线性模型
    model_train = LinearRegression().fit(X_train, y_train)
    model_prod = LinearRegression().fit(X_prod, y_prod)
    
    # 获取系数
    coef_train = np.append(model_train.intercept_, model_train.coef_)
    coef_prod = np.append(model_prod.intercept_, model_prod.coef_)
    
    # 计算系数差异
    coef_diff = coef_prod - coef_train
    
    # 计算L2距离
    l2_distance = np.linalg.norm(coef_diff)
    
    # 计算标准误差(简化版本)
    n_train, n_prod = len(X_train), len(X_prod)
    y_pred_train = model_train.predict(X_train)
    y_pred_prod = model_prod.predict(X_prod)
    
    mse_train = np.mean((y_train - y_pred_train) ** 2)
    mse_prod = np.mean((y_prod - y_pred_prod) ** 2)
    
    # 计算Z统计量和p值
    p_values = []
    for i in range(len(coef_train)):
        # 简化的标准误差估计
        se_combined = np.sqrt(mse_train/n_train + mse_prod/n_prod)
        z_value = coef_diff[i] / se_combined if se_combined > 0 else 0
        p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value)))
        p_values.append(p_value)
    
    # 判断是否发生概念漂移
    significant_drift = any(p < alpha for p in p_values)
    large_distance = l2_distance > 1.0  # 可调整的阈值
    
    drift_detected = significant_drift or large_distance
    
    diagnostics = {
        'drift_detected': drift_detected,
        'l2_distance': l2_distance,
        'p_values': p_values,
        'coef_train': coef_train,
        'coef_prod': coef_prod,
        'significant_features': [i for i, p in enumerate(p_values) if p < alpha]
    }
    
    return drift_detected, diagnostics

# 示例使用
def demonstrate_drift_detection():
    """演示概念漂移检测"""
    np.random.seed(42)
    
    # 生成训练数据(正常关系)
    n_train = 1000
    X_train = np.random.randn(n_train, 3)
    y_train = 2.0 * X_train[:, 0] - 1.5 * X_train[:, 1] + 3.0 * X_train[:, 2] + np.random.randn(n_train) * 0.1
    
    # 生成线上数据(关系发生变化 - 概念漂移)
    n_prod = 800
    X_prod = np.random.randn(n_prod, 3)
    # 改变特征关系模拟概念漂移
    y_prod = 3.0 * X_prod[:, 0] - 0.5 * X_prod[:, 1] + 2.5 * X_prod[:, 2] + np.random.randn(n_prod) * 0.1
    
    # 检测概念漂移
    drift_detected, report = linear_drift_detector(X_train, y_train, X_prod, y_prod)
    
    print(f"概念漂移检测结果: {drift_detected}")
    print(f"系数L2距离: {report['l2_distance']:.4f}")
    print(f"显著变化的特征: {report['significant_features']}")
    
    return drift_detected, report

# 运行示例
# drift_detected, report = demonstrate_drift_detection()

💡 第七届国际科技创新学术交流大会(IAECST 2025)

  • 2025 7th International Academic Exchange Conference on Science and Technology Innovation
  • 时间地点:2025年12月19-21日丨中国·广州
  • 亮点:IEEE出版保障高效检索,汇聚通信、新能源等多领域创新智慧,推动产学研深度融合!
  • 检索:IEEE出版,收录IEEE Xplore,提交EI、Scopus检索
  • 适合投稿人群:科技创新领域硕博生,专注跨学科研究与实践应用的复合型人才!
  • 💡 IAECST 2025 - 模块化机器遗忘学习——这个示例展示了一种新颖的机器遗忘学习方法,可以在不重新训练整个模型的情况下,快速移除对特定类别或数据点的知识。
import numpy as np
from sklearn.preprocessing import LabelBinarizer

class MPRUForgetting:
    """
    模块化投影再分布遗忘实现
    基于MPRU方法,通过输出层的投影和再分布实现高效的机器遗忘[citation:4]
    """
    
    def __init__(self, base_model, classes):
        self.base_model = base_model
        self.classes = classes
        self.n_classes = len(classes)
        self.projection_matrix = None
        self.is_fitted = False
        
        # 初始化标签二值化器
        self.label_binarizer = LabelBinarizer()
        self.label_binarizer.fit(classes)
    
    def compute_projection_matrix(self, X, y, class_to_forget):
        """
        计算投影矩阵以实现目标类的遗忘
        """
        # 获取基模型的预测概率
        base_proba = self.base_model.predict_proba(X)
        
        # 将目标类概率投影到其他类别
        forget_idx = list(self.classes).index(class_to_forget)
        remaining_idxs = [i for i in range(self.n_classes) if i != forget_idx]
        
        # 构建投影矩阵(简化实现)
        n_remaining = len(remaining_idxs)
        self.projection_matrix = np.eye(self.n_classes)
        
        # 将目标类的概率均匀分布到其他类别
        redistribution_weight = 1.0 / n_remaining if n_remaining > 0 else 0
        for i in remaining_idxs:
            self.projection_matrix[forget_idx, i] = redistribution_weight
        
        # 目标类概率置零
        self.projection_matrix[forget_idx, forget_idx] = 0
        
        self.is_fitted = True
        return self.projection_matrix
    
    def predict_proba(self, X):
        """
        使用投影矩阵进行预测,实现遗忘效果
        """
        if not self.is_fitted:
            raise ValueError("MPRU模型尚未训练,请先调用compute_projection_matrix")
        
        base_proba = self.base_model.predict_proba(X)
        # 应用投影矩阵
        modified_proba = base_proba @ self.projection_matrix.T
        
        # 确保概率归一化
        row_sums = modified_proba.sum(axis=1, keepdims=True)
        modified_proba = modified_proba / row_sums
        
        return modified_proba
    
    def get_forgetting_performance(self, X_test, y_test, class_to_forget):
        """
        评估遗忘性能:目标类应该被"遗忘"(随机猜测水平)
        """
        modified_proba = self.predict_proba(X_test)
        
        # 计算目标类的准确率(应该接近随机猜测)
        forget_mask = y_test == class_to_forget
        if np.any(forget_mask):
            forget_proba = modified_proba[forget_mask]
            # 目标类的平均预测概率
            forget_idx = list(self.classes).index(class_to_forget)
            avg_target_proba = np.mean(forget_proba[:, forget_idx])
            random_guess = 1.0 / self.n_classes
            
            forgetting_ratio = avg_target_proba / random_guess
            return forgetting_ratio, avg_target_proba
        else:
            return 1.0, 0.0

# 示例使用
def demonstrate_machine_unlearning():
    """演示机器遗忘学习"""
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.datasets import make_classification
    
    # 生成示例数据
    X, y = make_classification(
        n_samples=1000, n_features=20, n_classes=3, 
        n_informative=15, random_state=42
    )
    classes = [0, 1, 2]
    
    # 训练基模型
    base_model = RandomForestClassifier(n_estimators=100, random_state=42)
    base_model.fit(X, y)
    
    # 初始化MPRU遗忘器
    forgetter = MPRUForgetting(base_model, classes)
    
    # 选择要遗忘的类别
    class_to_forget = 1
    forgetter.compute_projection_matrix(X, y, class_to_forget)
    
    # 评估遗忘效果
    forgetting_ratio, avg_proba = forgetter.get_forgetting_performance(
        X, y, class_to_forget
    )
    
    print(f"目标类 {class_to_forget} 的遗忘效果:")
    print(f"平均预测概率: {avg_proba:.4f}")
    print(f"随机猜测水平: {1/len(classes):.4f}")
    print(f"遗忘比率: {forgetting_ratio:.4f} (越接近1.0效果越好)")
    
    return forgetter

# 运行示例
# forgetter = demonstrate_machine_unlearning()

⚙️ 第八届机械、控制与计算机工程国际学术会议(ICMCCE 2025)

  • 2025 8th International Conference on Mechanical, Control and Computer Engineering
  • 时间地点:2025年12月26-28日丨中国·西双版纳
  • 亮点:会议论文集出版检索稳定,聚焦机械与控制工程前沿,促进热带风光中的学术灵感碰撞!
  • 检索:Conference Proceeding出版,提交EI Compendex、Scopus检索
  • 适合投稿人群:机械与控制工程领域硕博生,致力于智能制造与系统优化的工程师学者!
  • ⚙️ ICMCCE 2025 - 非线性系统SDRE控制——这个示例实现了状态相关Riccati方程控制方法,用于处理机械系统中的非线性控制问题。
import numpy as np
from scipy.linalg import solve_continuous_are

class SDREController:
    """
    状态相关Riccati方程(SDRE)控制器
    用于非线性系统的最优控制[citation:7]
    """
    
    def __init__(self, A_func, B_func, Q, R):
        """
        参数:
            A_func: 状态相关A矩阵函数 A(x)
            B_func: 状态相关B矩阵函数 B(x) 
            Q: 状态权重矩阵
            R: 控制权重矩阵
        """
        self.A_func = A_func
        self.B_func = B_func
        self.Q = Q
        self.R = R
        
    def solve_sdre(self, x):
        """
        在给定状态x下求解SDRE
        """
        A = self.A_func(x)
        B = self.B_func(x)
        
        try:
            # 求解连续时间代数Riccati方程
            P = solve_continuous_are(A, B, self.Q, self.R)
            
            # 计算反馈增益矩阵 K = R^{-1} B^T P
            K = np.linalg.solve(self.R, B.T @ P)
            
            return K, P
            
        except np.linalg.LinAlgError:
            # 如果求解失败,返回零增益
            print("SDRE求解失败,使用零增益")
            return np.zeros((B.shape[1], A.shape[0])), self.Q
    
    def compute_control(self, x, x_desired=None):
        """
        计算控制输入 u = -K(x) * (x - x_desired)
        """
        if x_desired is None:
            x_desired = np.zeros_like(x)
        
        K, _ = self.solve_sdre(x)
        
        # 控制律: u = -K(x) * (x - x_desired)
        u = -K @ (x - x_desired)
        
        return u
    
    def simulate_system(self, x0, dt, T, system_dynamics, x_ref=None):
        """
        模拟SDRE控制系统
        """
        n_steps = int(T / dt)
        n_states = len(x0)
        n_controls = self.R.shape[0]
        
        # 初始化轨迹数组
        x_traj = np.zeros((n_steps, n_states))
        u_traj = np.zeros((n_steps, n_controls))
        
        x_current = x0.copy()
        
        for k in range(n_steps):
            # 存储当前状态
            x_traj[k] = x_current
            
            # 计算参考状态
            if x_ref is not None:
                x_desired = x_ref(k * dt)
            else:
                x_desired = np.zeros_like(x_current)
            
            # 计算控制输入
            u = self.compute_control(x_current, x_desired)
            u_traj[k] = u
            
            # 系统演化
            x_next = system_dynamics(x_current, u, dt)
            x_current = x_next
        
        return x_traj, u_traj

# 示例:倒立摆系统的SDRE控制
def inverted_pendulum_example():
    """
    倒立摆系统的SDRE控制示例
    """
    # 系统参数
    g = 9.81      # 重力加速度
    l = 1.0       # 摆杆长度
    m = 1.0       # 摆球质量
    b = 0.1       # 阻尼系数
    
    def A_func(x):
        """状态相关A矩阵"""
        theta, theta_dot = x[0], x[1]
        
        A = np.array([
            [0, 1],
            [g/l * np.cos(theta), -b/(m*l*l)]
        ])
        return A
    
    def B_func(x):
        """状态相关B矩阵"""
        B = np.array([[0], [1/(m*l*l)]])
        return B
    
    # 权重矩阵
    Q = np.diag([10.0, 1.0])  # 状态权重
    R = np.array([[0.1]])      # 控制权重
    
    # 创建SDRE控制器
    controller = SDREController(A_func, B_func, Q, R)
    
    def pendulum_dynamics(x, u, dt):
        """倒立摆动力学"""
        theta, theta_dot = x[0], x[1]
        
        # 系统动力学
        theta_ddot = (g/l * np.sin(theta) - b/(m*l*l) * theta_dot + u[0]/(m*l*l))
        
        # 欧拉积分
        theta_next = theta + theta_dot * dt
        theta_dot_next = theta_dot + theta_ddot * dt
        
        return np.array([theta_next, theta_dot_next])
    
    # 初始状态(偏离平衡位置)
    x0 = np.array([0.5, 0.0])  # 30度偏移,零速度
    
    # 模拟
    dt, T = 0.01, 5.0
    x_traj, u_traj = controller.simulate_system(
        x0, dt, T, pendulum_dynamics, 
        x_ref=lambda t: np.array([0.0, 0.0])  # 目标:直立位置
    )
    
    print("SDRE控制模拟完成")
    print(f"最终状态: theta={x_traj[-1, 0]:.4f}, theta_dot={x_traj[-1, 1]:.4f}")
    print(f"控制输入范围: [{u_traj.min():.2f}, {u_traj.max():.2f}]")
    
    return controller, x_traj, u_traj

# 运行示例
# controller, x_traj, u_traj = inverted_pendulum_example()

💻 第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)

  • 2025 6th International Conference on Computer Science and Management Technology
  • 时间地点:2025年12月26-28日丨中国·厦门
  • 亮点:ACM出版检索快速稳定,推动计算机技术与管理的跨界融合,搭建产学研协同创新平台!
  • 检索:ACM出版,提交EI Compendex、Scopus检索
  • 适合投稿人群:计算机科学与管理科技领域硕博生,专注信息技术与管理创新结合的研究者!
  • 💻 ICCSMT 2025 - 高效任务分配算法——这个示例实现了匈牙利算法的优化版本,用于解决计算机系统和管理科学中的资源分配问题。
import numpy as np

class OptimizedHungarian:
    """
    优化版匈牙利算法实现
    用于解决最优任务分配问题[citation:6]
    """
    
    def __init__(self, cost_matrix):
        self.cost_matrix = cost_matrix.copy()
        self.n, self.m = cost_matrix.shape
        self.row_covered = np.zeros(self.n, dtype=bool)
        self.col_covered = np.zeros(self.m, dtype=bool)
        self.starred = np.zeros_like(cost_matrix, dtype=bool)
        self.primed = np.zeros_like(cost_matrix, dtype=bool)
        
    def solve(self):
        """
        执行匈牙利算法求解最优分配
        """
        # 步骤1: 行归约
        self._reduce_rows()
        
        # 步骤2: 初始分配
        self._find_initial_assignment()
        
        while not self._is_solution_complete():
            # 步骤3: 覆盖所有零元素
            self._cover_zeros()
            
            # 如果没有找到完整解,调整矩阵
            if not self._is_solution_complete():
                self._adjust_matrix()
        
        return self._get_assignment()
    
    def _reduce_rows(self):
        """行归约:每行减去该行最小值"""
        for i in range(self.n):
            min_val = np.min(self.cost_matrix[i])
            self.cost_matrix[i] -= min_val
    
    def _reduce_cols(self):
        """列归约:每列减去该列最小值"""
        for j in range(self.m):
            min_val = np.min(self.cost_matrix[:, j])
            self.cost_matrix[:, j] -= min_val
    
    def _find_initial_assignment(self):
        """寻找初始分配"""
        # 在每行和每列中寻找独立的零元素
        for i in range(self.n):
            for j in range(self.m):
                if (self.cost_matrix[i, j] == 0 and 
                    not self.row_covered[i] and 
                    not self.col_covered[j]):
                    self.starred[i, j] = True
                    self.row_covered[i] = True
                    self.col_covered[j] = True
        
        # 重置覆盖标记
        self.row_covered.fill(False)
        self.col_covered.fill(False)
    
    def _cover_zeros(self):
        """覆盖所有零元素"""
        # 覆盖包含星号零的列
        for j in range(self.m):
            for i in range(self.n):
                if self.starred[i, j]:
                    self.col_covered[j] = True
                    break
        
        covered_cols = np.sum(self.col_covered)
        
        if covered_cols >= min(self.n, self.m):
            return
        
        # 寻找未覆盖的零并primed
        while True:
            zero_found = False
            for i in range(self.n):
                for j in range(self.m):
                    if (self.cost_matrix[i, j] == 0 and 
                        not self.row_covered[i] and 
                        not self.col_covered[j]):
                        self.primed[i, j] = True
                        
                        # 检查该行是否有星号零
                        star_col = -1
                        for k in range(self.m):
                            if self.starred[i, k]:
                                star_col = k
                                break
                        
                        if star_col != -1:
                            self.row_covered[i] = True
                            self.col_covered[star_col] = False
                        else:
                            self._augment_path(i, j)
                            return
                        
                        zero_found = True
                        break
                if zero_found:
                    break
            
            if not zero_found:
                self._adjust_matrix()
                return
    
    def _augment_path(self, start_i, start_j):
        """增广路径"""
        path = [(start_i, start_j)]
        
        while True:
            # 在当前行找星号零
            star_i, star_j = -1, -1
            for j in range(self.m):
                if self.starred[path[-1][0], j]:
                    star_i, star_j = path[-1][0], j
                    break
            
            if star_i == -1:
                break
            
            path.append((star_i, star_j))
            
            # 在当前列找primed零
            prime_i, prime_j = -1, -1
            for i in range(self.n):
                if self.primed[i, star_j]:
                    prime_i, prime_j = i, star_j
                    break
            
            if prime_i == -1:
                break
            
            path.append((prime_i, prime_j))
        
        # 增广路径:primed变starred,starred变unstarred
        for i, j in path:
            if self.starred[i, j]:
                self.starred[i, j] = False
            else:
                self.starred[i, j] = True
        
        # 重置
        self.primed.fill(False)
        self.row_covered.fill(False)
        self.col_covered.fill(False)
    
    def _adjust_matrix(self):
        """调整成本矩阵"""
        # 找到最小的未覆盖值
        min_val = np.inf
        for i in range(self.n):
            for j in range(self.m):
                if not self.row_covered[i] and not self.col_covered[j]:
                    min_val = min(min_val, self.cost_matrix[i, j])
        
        # 调整矩阵
        for i in range(self.n):
            if self.row_covered[i]:
                self.cost_matrix[i] += min_val
        
        for j in range(self.m):
            if not self.col_covered[j]:
                self.cost_matrix[:, j] -= min_val
    
    def _is_solution_complete(self):
        """检查是否找到完整解"""
        return np.sum(self.starred) == min(self.n, self.m)
    
    def _get_assignment(self):
        """获取最终分配结果"""
        assignment = []
        total_cost = 0
        
        for i in range(self.n):
            for j in range(self.m):
                if self.starred[i, j]:
                    assignment.append((i, j))
                    total_cost += self.cost_matrix[i, j] if hasattr(self, 'original_cost') else 0
                    break
        
        return assignment, total_cost

def demonstrate_task_allocation():
    """演示任务分配"""
    # 创建成本矩阵(工作人员 vs 任务)
    np.random.seed(42)
    n_workers = 4
    n_tasks = 4
    
    # 成本矩阵:worker[i]完成task[j]的成本
    cost_matrix = np.random.randint(10, 50, size=(n_workers, n_tasks))
    
    print("任务分配成本矩阵:")
    print(cost_matrix)
    
    # 求解最优分配
    hungarian = OptimizedHungarian(cost_matrix)
    assignment, total_cost = hungarian.solve()
    
    print(f"\n最优分配方案:")
    for worker_idx, task_idx in assignment:
        cost = cost_matrix[worker_idx, task_idx]
        print(f"工作人员 {worker_idx} -> 任务 {task_idx} (成本: {cost})")
    
    print(f"总成本: {total_cost}")
    
    return assignment, total_cost

# 运行示例
# assignment, total_cost = demonstrate_task_allocation()
  • 🎉 四城联袂呈现学术盛宴,投稿通道全面开启!快来与全球精英切磋交流,让您的研究成果在国际舞台绽放独特光彩!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想努力的小土博

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值