【生成式AI】DDPM(去噪扩散概率模型)和DDIM(去噪扩散隐式模型):从随机噪声到艺术创作的魔法之旅

【生成式AI】DDPM(去噪扩散概率模型)和DDIM(去噪扩散隐式模型):从随机噪声到艺术创作的魔法之旅

【生成式AI】DDPM(去噪扩散概率模型)和DDIM(去噪扩散隐式模型):从随机噪声到艺术创作的魔法之旅



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz


DDPM与DDIM:从随机噪声到艺术创作的魔法之旅

  • 探索生成式AI中两种核心扩散模型的原理与奥秘
  • 在人工智能生成内容(AIGC)的浪潮中,扩散模型以其出色的生成质量和稳定性成为了当之无愧的明星。今天,我们将深入解析两种重要的扩散模型——DDPM(去噪扩散概率模型)和DDIM(去噪扩散隐式模型),揭示它们如何将随机噪声转化为惊艳的图像作品。

一、 基础概念:什么是扩散模型?

想象一下,你有一幅清晰的画作,然后不断地在上面撒上细微的噪点,直到画作完全变成随机噪声。接着,你尝试学习如何逆向这个过程——从随机噪声一步步恢复出原始画作。这就是扩散模型的核心思想。

1.1 扩散过程的核心组件

  • 前向过程:逐步破坏数据,添加噪声
  • 反向过程:学习从噪声中恢复原始数据
  • 噪声调度:控制每一步添加的噪声量

二、 DDPM:扩散模型的奠基者

2.1 前向过程:数据的渐进式破坏

  • DDPM的前向过程是一个固定的马尔可夫链,逐步向数据添加高斯噪声。
import torch
import torch.nn as nn
import numpy as np

class DDPMScheduler:
    def __init__(self, num_timesteps=1000, beta_start=0.0001, beta_end=0.02):
        self.num_timesteps = num_timesteps
        
        # 线性噪声调度
        self.betas = torch.linspace(beta_start, beta_end, num_timesteps)
        self.alphas = 1. - self.betas
        self.alpha_bars = torch.cumprod(self.alphas, dim=0)  # ᾱ_t =(1-β_s)
    
    def add_noise(self, x0, t, noise=None):
        """前向扩散过程:根据时间步t向x0添加噪声"""
        if noise is None:
            noise = torch.randn_like(x0)
        
        # 计算当前时间步的ᾱ_t
        alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
        
        # 前向扩散公式:x_t = √ᾱ_t * x0 + √(1-ᾱ_t) * ε
        xt = torch.sqrt(alpha_bar_t) * x0 + torch.sqrt(1 - alpha_bar_t) * noise
        
        return xt, noise

2.2 反向过程:学习去噪的艺术

  • DDPM的核心是训练一个神经网络来预测添加的噪声。
class DDPM(nn.Module):
    def __init__(self, network, num_timesteps=1000):
        super().__init__()
        self.network = network  # 通常是U-Net
        self.scheduler = DDPMScheduler(num_timesteps)
    
    def forward(self, x0, t=None):
        """训练过程:预测噪声"""
        batch_size = x0.shape[0]
        
        # 随机采样时间步
        if t is None:
            t = torch.randint(0, self.scheduler.num_timesteps, (batch_size,))
        
        # 添加噪声
        noise = torch.randn_like(x0)
        xt, true_noise = self.scheduler.add_noise(x0, t, noise)
        
        # 预测噪声
        predicted_noise = self.network(xt, t)
        
        # 简单的MSE损失
        loss = nn.MSELoss()(predicted_noise, true_noise)
        return loss
    
    @torch.no_grad()
    def sample(self, shape, device):
        """采样过程:从噪声生成图像"""
        # 从纯噪声开始
        x = torch.randn(shape, device=device)
        
        # 逐步去噪
        for t in reversed(range(self.scheduler.num_timesteps)):
            # 预测噪声
            predicted_noise = self.network(x, torch.tensor([t] * shape[0], device=device))
            
            # 计算x_{t-1}
            x = self._reverse_step(x, t, predicted_noise)
        
        return x
    
    def _reverse_step(self, xt, t, predicted_noise):
        """DDPM反向步骤"""
        beta_t = self.scheduler.betas[t]
        alpha_t = self.scheduler.alphas[t]
        alpha_bar_t = self.scheduler.alpha_bars[t]
        
        if t > 0:
            z = torch.randn_like(xt)
        else:
            z = torch.zeros_like(xt)
        
        # DDPM反向步骤公式
        mean = (xt - beta_t * predicted_noise / torch.sqrt(1 - alpha_bar_t)) / torch.sqrt(alpha_t)
        variance = torch.sqrt(beta_t)
        
        return mean + variance * z

2.3 DDPM的优势与局限

优势:
  • 训练稳定:简单的噪声预测目标
  • 生成质量高:在足够多步数下产生高质量样本
  • 理论完备:有坚实的概率理论基础
局限:
  • 采样速度慢:需要1000步或更多步数
  • 计算成本高:每个样本都需要多次神经网络前向传播

三、 DDIM:加速采样的革命

  • DDIM的核心洞察是:扩散过程的前向过程不一定是马尔科夫的,我们可以设计非马尔科夫的前向过程,从而允许更快的反向采样。

3.1 DDIM的理论基础

class DDIMScheduler:
    def __init__(self, num_timesteps=1000, ddim_discretize="uniform", ddim_eta=0.0):
        self.num_timesteps = num_timesteps
        self.ddim_eta = ddim_eta  # 控制随机性的参数
        
        # 使用与DDPM相同的噪声调度
        self.betas = torch.linspace(0.0001, 0.02, num_timesteps)
        self.alphas = 1. - self.betas
        self.alpha_bars = torch.cumprod(self.alphas, dim=0)
    
    def get_ddim_timesteps(self, num_inference_steps):
        """选择用于DDIM采样的时间步子集"""
        # 从原始1000步中选择一个子序列
        step_ratio = self.num_timesteps // num_inference_steps
        timesteps = list(range(0, self.num_timesteps, step_ratio))
        return timesteps

3.2 DDIM的采样算法

class DDIM(DDPM):
    def __init__(self, network, num_timesteps=1000, ddim_eta=0.0):
        super().__init__(network, num_timesteps)
        self.ddim_eta = ddim_eta
    
    @torch.no_grad()
    def ddim_sample(self, shape, device, num_inference_steps=50):
        """DDIM加速采样"""
        # 选择时间步子集
        timesteps = self.scheduler.get_ddim_timesteps(num_inference_steps)
        
        # 从纯噪声开始
        x = torch.randn(shape, device=device)
        
        for i, t in enumerate(reversed(timesteps)):
            # 预测噪声
            predicted_noise = self.network(x, torch.tensor([t] * shape[0], device=device))
            
            # DDIM反向步骤
            x = self._ddim_step(x, t, predicted_noise, timesteps, i)
        
        return x
    
    def _ddim_step(self, xt, t, predicted_noise, timesteps, step_index):
        """DDIM反向步骤的核心算法"""
        # 获取前一个时间步
        prev_t = timesteps[len(timesteps) - step_index - 2] if step_index < len(timesteps) - 1 else 0
        
        alpha_bar_t = self.scheduler.alpha_bars[t]
        alpha_bar_prev = self.scheduler.alpha_bars[prev_t]
        
        # 预测的x0
        predicted_x0 = (xt - torch.sqrt(1 - alpha_bar_t) * predicted_noise) / torch.sqrt(alpha_bar_t)
        
        # 预测的方向
        direction = torch.sqrt(1 - alpha_bar_prev - self.ddim_eta**2) * predicted_noise
        
        # 随机噪声(当ddim_eta > 0时添加)
        if self.ddim_eta > 0:
            noise = torch.randn_like(xt)
        else:
            noise = torch.zeros_like(xt)
        
        # DDIM更新公式
        x_prev = torch.sqrt(alpha_bar_prev) * predicted_x0 + direction + self.ddim_eta * noise
        
        return x_prev

3.3 DDIM的独特优势

# DDIM的特殊功能示例
class AdvancedDDIM(DDIM):
    def __init__(self, network, num_timesteps=1000, ddim_eta=0.0):
        super().__init__(network, num_timesteps, ddim_eta)
    
    @torch.no_grad()
    def interpolate_latent(self, x1, x2, num_steps=10):
        """在潜在空间中进行插值"""
        interpolations = []
        
        for alpha in torch.linspace(0, 1, num_steps):
            # 线性插值
            z = alpha * x1 + (1 - alpha) * x2
            # 使用DDIM从插值的潜在变量生成图像
            generated = self.ddim_sample_from_latent(z.unsqueeze(0))
            interpolations.append(generated)
        
        return torch.cat(interpolations)
    
    @torch.no_grad() 
    def ddim_sample_from_latent(self, xt, start_t=500, num_steps=20):
        """从中间潜在状态开始采样"""
        timesteps = self.scheduler.get_ddim_timesteps(num_steps)
        
        # 找到起始时间步
        start_index = min(range(len(timesteps)), 
                         key=lambda i: abs(timesteps[i] - start_t))
        
        x = xt
        for i in range(start_index, len(timesteps)):
            t = timesteps[i]
            prev_t = timesteps[i-1] if i > 0 else 0
            
            predicted_noise = self.network(x, torch.tensor([t] * x.shape[0]))
            x = self._ddim_step(x, t, predicted_noise, timesteps, i)
        
        return x

四、 DDPM与DDIM的深度对比分析

4.1 采样过程对比

在这里插入图片描述

4.2 数学性质对比

def compare_sampling_process():
    """对比DDPM和DDIM的采样过程"""
    
    # DDPM采样轨迹(随机性较强)
    ddpm_trajectory = []
    x = initial_noise
    for t in reversed(range(1000)):
        x = ddpm_reverse_step(x, t)
        ddpm_trajectory.append(x)
    
    # DDIM采样轨迹(更确定性的路径)
    ddim_trajectory = []
    x = initial_noise
    timesteps = select_timesteps(50)  # 只选50个时间步
    for t in reversed(timesteps):
        x = ddim_reverse_step(x, t)
        ddim_trajectory.append(x)
    
    return ddpm_trajectory, ddim_trajectory

4.3 实际应用场景

DDPM适用场景:
  • 对生成质量要求极高的应用
  • 计算资源充足,不关心推理速度
  • 需要完全随机性的生成过程
DDIM适用场景:
  • 需要快速推理的实际应用
  • 交互式图像生成工具
  • 需要确定性生成或潜在空间操作的研究

五、 实际性能对比

5.1 速度与质量权衡

import time
from evaluate import calculate_fid, calculate_inception_score

def benchmark_models(model, test_dataset, device):
    """基准测试DDPM和DDIM的性能"""
    
    results = {}
    
    # DDPM采样(1000步)
    start_time = time.time()
    ddpm_samples = model.sample((100, 3, 64, 64), device)  # 标准DDPM采样
    ddpm_time = time.time() - start_time
    
    # DDIM采样(50步)
    start_time = time.time()
    ddim_samples = model.ddim_sample((100, 3, 64, 64), device, num_inference_steps=50)
    ddim_time = time.time() - start_time
    
    # 评估生成质量
    results['ddpm_fid'] = calculate_fid(ddpm_samples, test_dataset)
    results['ddim_fid'] = calculate_fid(ddim_samples, test_dataset)
    
    results['ddpm_time'] = ddpm_time
    results['ddim_time'] = ddim_time
    results['speedup'] = ddpm_time / ddim_time
    
    return results

5.2 不同步数下的性能表现

实验表明:

  • DDPM:需要接近1000步才能达到最佳质量
  • DDIM:在50-100步时就能达到接近DDPM的质量
  • 加速比:DDIM通常比DDPM快10-50倍

六、 进阶应用与变体

6.1 条件生成

class ConditionalDDIM(DDIM):
    def __init__(self, network, num_timesteps=1000, ddim_eta=0.0):
        super().__init__(network, num_timesteps, ddim_eta)
    
    @torch.no_grad()
    def conditional_sample(self, condition, shape, device, num_steps=50):
        """基于条件的采样"""
        x = torch.randn(shape, device=device)
        
        timesteps = self.scheduler.get_ddim_timesteps(num_steps)
        
        for i, t in enumerate(reversed(timesteps)):
            # 将条件信息与噪声图像一起输入网络
            predicted_noise = self.network(x, torch.tensor([t] * shape[0], device=device), condition)
            x = self._ddim_step(x, t, predicted_noise, timesteps, i)
        
        return x

6.2 文本到图像生成

  • 现代文本到图像模型(如Stable Diffusion)实际上使用的是潜在空间的DDIM:
class LatentDDIM:
    def __init__(self, vae, unet, clip_model):
        self.vae = vae  # 变分自编码器,用于图像与潜在空间的转换
        self.unet = unet  # 在潜在空间中进行去噪的U-Net
        self.clip_model = clip_model  # 文本编码器
    
    def text_to_image(self, prompt, num_steps=20):
        """文本到图像生成"""
        # 编码文本提示
        text_embeddings = self.clip_model.encode_text(prompt)
        
        # 从潜在空间中的噪声开始
        latent = torch.randn(1, 4, 64, 64)  # 潜在空间维度
        
        # 使用DDIM在潜在空间中采样
        for t in reversed(range(num_steps)):
            # 预测噪声(结合文本条件)
            noise_pred = self.unet(latent, t, text_embeddings)
            # DDIM步骤
            latent = self.ddim_step(latent, t, noise_pred)
        
        # 解码回像素空间
        image = self.vae.decode(latent)
        return image

七、 总结与展望

7.1 技术演进路径

DDPM → DDIM → 更高效的变体

  • DDPM:奠定了扩散模型的概率理论基础
  • DDIM:实现了数量级的速度提升,保持了生成质量
  • 后续发展:DPM-Solver、Progressive Distillation等进一步加速技术

7.2 核心启示

  • 理论洞察的价值:DDIM的成功表明,对基础理论的深刻理解可以带来突破性的改进
  • 实用性驱动创新:DDIM的诞生正是为了解决DDPM采样慢的实际问题
  • 灵活性的重要性:DDIM提供的确定性采样和潜在空间操作为后续应用开辟了新道路

7.3 未来方向

  • 更快的采样算法:目标是在10步以内达到高质量生成
  • 更好的条件控制:更精确地控制生成内容的各个方面
  • 多模态扩展:将扩散模型扩展到视频、3D、音频等领域
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想努力的小土博

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值