1.题目
喷水装置 | ||
|
问题描述
长L米,宽W米的草坪里装有n个浇灌喷头。每个喷头都装在草坪中心线上(离两边各W/2米)。
我们知道每个喷头的位置(离草坪中心线左端的距离,以及它能覆盖到的浇灌范围。
请问:如果要同时浇灌整块草坪,最少需要打开多少个喷头?
输入格式
输入包含若干组测试数据。
第一行一个整数T表示数据组数;
每组数据的第一行是整数 n、L和W;
接下来的N行,每行包含两个整数,给出一个喷头的位置和浇灌半径(上面的示意图是样例输入第一组数据所描述的情况)。
输出格式
对每组测试数据输出一个数字,表示要浇灌整块草坪所需喷头数目的最小值。如果所有喷头都打开也不能浇灌整块草坪,则输出-1。
样例输入
3
8 20 2
5 3
4 1
1 2
7 2
10 2
13 3
16 2
19 4
3 10 1
3 5
9 3
6 1
3 10 1
5 3
1 1
9 1
样例输出
6
2
-1
2.分析
这道题看似是二维,实则一维,需要转换一下;
利用一点公式就行了;
for(int i=1;i<=n;i++)
{
cin>>aa>>b;
if(b>w/2)
{
x++;
a[x].x=aa-sqrt(b*b-(w/2*w/2));
a[x].y=aa+sqrt(b*b-(w/2*w/2));
}
}
k=0;
(作者是新手不是很会讲,如有不清楚或不对,请大佬指点)
3.AC代码
#include<bits/stdc++.h>
using namespace std;
int n;
long long k;
long long a[52],c[52];
long long pd(int x,long long y)
{
if(x==0) return 1;
if(y==1) return 0;
else if(y<=c[x-1]+1) return pd(x-1,y-1);
else if(y==c[x-1]+2) return a[x-1]+1;
else if(y<=c[x-1]*2+2) return a[x-1]+pd(x-1,y-c[x-1]-2)+1;
else return a[x];
}
int main()
{
cin>>n>>k;
a[0]=1;
c[0]=1;
for(int i=1;i<=50;i++)
{
a[i]=a[i-1]*2+1;
c[i]=c[i-1]*2+3;
}
cout<<pd(n,k);
return 0;
}