思路
这道题涉及到动态规划,需要使用dp表
状态表示方程
dp[i]表示第i个泰波那契数的值
状态转移方程
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
初始化
dp[0] = 0;
dp[1] = 1;//初始化dp表
dp[2] = 1;
直接一个for循环出答案
for (int i = 3; i < n + 1; i++)
{
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];//填入数据
}
注意处理边界情况
if (n == 0) return 0;//处理边界情况
if (n == 1 || n == 2) return 1;
#define _CRT_SECURE_NO_WARNINGS 1
#include<vector>
using namespace std;
class Solution {
public:
int tribonacci(int n) {
if (n == 0) return 0;//处理边界情况
if (n == 1 || n == 2) return 1;
vector<int>dp(n + 1);
dp[0] = 0;
dp[1] = 1;//初始化dp表
dp[2] = 1;
for (int i = 3; i < n + 1; i++)
{
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];//填入数据
}
return dp[n];
}
};