集成算法 机器学习

集成算法的简介 

对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好。

集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务等。

 

 

使用模型

#导入需要模块

import torch

import torch.nn as nn

import torch.optim as optim

import torch.nn.functional as F

import torch.backends.cudnn as cudnn

import numpy as np

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

from collections import Counter

# 定义一些超参数

BATCHSIZE = 100

DOWNLOAD_MNIST = False

EPOCHES = 20

LR = 0.001

#定义相关模型结构,这三个网络结构比较相近

class CNNNet(nn.Module):

    def __init__(self):

        super(CNNNet, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=3,out_channels=16,kernel_size=5,stride=1)

        self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2)

        self.conv2 = nn.Conv2d(in_channels=16,out_channels=36,kernel_size=3, stride=1)

        self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2)

        self.fc1 = nn.Linear(1296,128)

        self.fc2 = nn.Linear(128,10)

    def forward(self, x):

        x = self.pool1(F.relu(self.conv1(x)))

        x = self.pool2(F.relu(self.conv2(x)))

        # print(x.shape)

        x = x.view(-1,36*6*6)

        x = F.relu(self.fc2(F.relu(self.fc1(x))))

        return x

class Net(nn.Module):

    def __init__(self):

        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(3,16,5)

        self.pool1 = nn.MaxPool2d(2,2)

        self.conv2 = nn.Conv2d(16,36,5)

        self.pool2 = nn.MaxPool2d(2,2)

        self.aap = nn.AdaptiveAvgPool2d(1)

        self.fc3 = nn.Linear(36,10)

    def forward(self, x):

        x = self.pool1(F.relu(self.conv1(x)))

        x = self.pool2(F.relu(self.conv2(x)))

        x = self.aap(x)

        x = x.view(x.shape[0], -1)

        x = self.fc3(x)

        return x

 

class LeNet(nn.Module):

    def __init__(self):

        super(LeNet, self).__init__()

        self.conv1 = nn.Conv2d(3,6,5)

        self.conv2 = nn.Conv2d(6,16,5)

        self.fc1 = nn.Linear(16*5*5,120)

        self.fc2 = nn.Linear(120,84)

        self.fc3 = nn.Linear(84,10)

    def forward(self, x):

        out = F.relu(self.conv1(x))

        out = F.max_pool2d(out, 2)

        out = F.relu(self.conv2(out))

        out = F.max_pool2d(out, 2)

        out = out.view(out.size(0), -1)

        out = F.relu(self.fc1(out))

        out = F.relu(self.fc2(out))

        out = self.fc3(out)

        return out

cfg = {

    'VGG16':[64,64,'M',128,128,'M',256,256,256,'M',512,512,512,'M',512,512,512,'M'],

    'VGG19':[64,64,'M',128,128,'M',256,256,256,256,'M',512,512,512,512,'M',512,512,512,512,'M'],

}

class VGG(nn.Module):

    def __init__(self,vgg_name):

        super(VGG,self).__init__()

        self.features = self._make_layers(cfg[vgg_name])

        self.classifier = nn.Linear(512, 10)

    def forward(self, x):

        out = self.features(x)

        out = out.view(out.size(0), -1)

        out = self.classifier(out)

        return out

    def _make_layers(self, cfg):

        layers = []

        in_channels = 3

        for x in cfg:

            if x == 'M':

                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]

            else:

                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),

                           nn.BatchNorm2d(x),

                           nn.ReLU(inplace=True)]

                in_channels = x

        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]

        return nn.Sequential(*layers)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print('==> Preparing data..')

transform_train = transforms.Compose([

    transforms.RandomCrop(32, padding=4),

    transforms.RandomHorizontalFlip(),

    transforms.ToTensor(),

    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

])

transform_test = transforms.Compose([

    transforms.ToTensor(),

    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)

trainloader = torch.utils.data.DataLoader(trainset,batch_size=128,shuffle=True,num_workers=0)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)

testloader = torch.utils.data.DataLoader(testset,batch_size=100,shuffle=False,num_workers=0)

classes = ('plane','car','bird','cat','deer','dog','frog','horse','ship','truck')

print('==> Building model..')

net1 = CNNNet()

net2 = Net()

net3 = LeNet()

net4 = VGG('VGG16')

# 模型集成方法

#把三个网络模型放在一个列表里

mlps = [net1.to(device), net2.to(device), net3.to(device)]

optimizer = torch.optim.Adam([{"params":mlp.parameters()} for mlp in mlps],lr=LR)

loss_function = nn.CrossEntropyLoss()

for ep in range(EPOCHES):

    for img, label in trainloader:

        img, label = img.to(device), label.to(device)

        optimizer.zero_grad() #10个网络清除梯度

        for mlp in mlps:

            mlp.train()

            out=mlp(img)

            loss = loss_function(out, label)

            loss.backward() #网络们获得梯度

        optimizer.step()

    pre=[]

    vote_correct=0

    mlps_correct=[0 for i in range(len(mlps))]

    for img, label in testloader:

        img, label = img.to(device), label.to(device)

        for i, mlp in enumerate(mlps):

            mlp.eval()

            out = mlp(img)

            _, prediction = torch.max(out, 1) #按行取最大值

            pre_num = prediction.cpu().numpy()

            mlps_correct[i] += (pre_num == label.cpu().numpy()).sum()

            pre.append(pre_num)

        arr = np.array(pre)

        pre.clear()

        result = [Counter(arr[:,i]).most_common(1)[0][0] for i in range(BATCHSIZE)]

        vote_correct += (result == label.cpu().numpy()).sum()

    print("epoch:" + str(ep) + "集成模型的正确率" + str(vote_correct/len(testloader)))

    for idx,correct in enumerate(mlps_correct):

        print("模型" + str(idx) + "的正确率为:" + str(correct/len(testloader)))

mlps=[net4.to(device)]

optimizer = torch.optim.Adam([{"params":mlp.parameters()} for mlp in mlps],lr=LR)

loss_function = nn.CrossEntropyLoss()

for ep in range(EPOCHES):

    for img, label in trainloader:

        img, label = img.to(device), label.to(device)

        optimizer.zero_grad()

        for mlp in mlps:

            mlp.train()

            out = mlp(img)

            loss = loss_function(out, label)

            loss.backward()

        optimizer.step()

    pre = []

    vote_correct = 0

    mlps_correct=[0 for i in range(len(mlps))]

    for img, label in testloader:

        img, label = img.to(device), label.to(device)

        for i, mlp in enumerate(mlps):

            mlp.eval()

            out = mlp(img)

            _, prediction = torch.max(out, 1)

            pre_num = prediction.cpu().numpy()

            mlps_correct[i] += (pre_num==label.cpu().numpy()).sum()

            pre.append(pre_num)

        arr = np.array(pre)

        pre.clear()

        result = [Counter(arr[:,i]).most_common(1)[0][0] for i in range(BATCHSIZE)]

        vote_correct += (result == label.cpu().numpy()).sum()

    for idx,correct in enumerate(mlps_correct):

        print("VGG16模型迭代" + str(ep) + "次的正确率为:" + str(correct/len(testloader)))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值