动态规划 - 子序列问题

LeetCode-72. 编辑距离

操作单词的方法

我们可以对任意一个单词进行三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

给定两个单词,设为 AB,这样我们就能够进行六种操作方法。然而,我们可以发现以下等价关系:

  • 对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。

    例如,当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 的末尾添加一个字符 e,得到相同的 doge

  • 对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的。

  • 对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。

    例如,当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

这样以来,本质不同的操作实际上只有三种:

  1. 在单词 A 中插入一个字符
  2. 在单词 B 中插入一个字符
  3. 修改单词 A 的一个字符
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        n, m = len(word1), len(word2)
        @cache
        def dfs(i: int, j: int) -> int:
            if i < 0:
                return j + 1
            if j < 0:
                return i + 1
            if word1[i] == word2[j]:
                return dfs(i - 1, j - 1)
            return min(dfs(i - 1, j), dfs(i, j - 1), dfs(i - 1, j - 1)) + 1
        return dfs(n - 1, m - 1)
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        n, m = len(word1), len(word2)
        f = [[0] * (m + 1) for _ in range(n + 1)]
        f[0] = list(range(m + 1))

        for i, x in enumerate(word1):
            f[i + 1][0] = i + 1
            for j, y in enumerate(word2):
                if x == y:
                    f[i + 1][j + 1] = f[i][j] 
                else:
                    f[i + 1][j + 1] = min(f[i][j + 1], f[i + 1][j], f[i][j]) + 1

        return f[n][m]

LeetCode-300. 最长递增子序列

dfs(i) 表示以 nums[i] 结尾的最长递增子序列的长度。

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        @cache
        def dfs(i: int) -> int:
            res = 0
            for j in range(i):
                if nums[j] < nums[i]:
                    res = max(res, dfs(j))
            return res + 1
        return max(dfs(i) for i in range(len(nums)))

同记忆化搜索,f[i] 表示以 nums[i] 结尾的最长递增子序列的长度。

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        f = [0] * len(nums)
        for i, x in enumerate(nums):
            for j, y in enumerate(nums[:i]):
                if x > y:
                    f[i] = max(f[i], f[j])
            f[i] += 1
        return max(f)

贪心 + 二分查找

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        tails = []
        for num in nums:
            idx = bisect_left(tails, num)
            if idx == len(tails):
                tails.append(num)
            else:
                tails[idx] = num

        return len(tails)

LeetCode-1143. 最长公共子序列

假设字符串 text1text2 的长度分别为 mn,创建一个大小为 (m+1) × (n+1) 的二维数组 dp,其中 dp[i][j] 表示 text1[0:i]text2[0:j] 的最长公共子序列的长度。

说明

  • text1[0:i] 表示 text1 的前 i 个字符。
  • text2[0:j] 表示 text2 的前 j 个字符。

最长公共子序列(LCS)的动态规划解法

  • 假设字符串 text1text2 的长度分别为 mn,创建 m+1n+1 列的二维数组 dp,其中 dp[i][j] 表示 text1[0:i]text2[0:j] 的最长公共子序列的长度。

  • 上述表示中,text1[0:i] 表示 text1 的前 i 个字符,text2[0:j] 表示 text2 的前 j 个字符。

状态转移方程

i > 0j > 0 时,考虑 dp[i][j] 的计算:

1. 字符相等的情况

  • 条件text1[i-1] = text2[j-1]

  • 解释

    • 这两个相同的字符称为公共字符。
    • 可以将这两个字符加入到之前的最长公共子序列中。
  • 状态转移

    dp[i][j]=dp[i−1][j−1]+1 dp[i][j] = dp[i-1][j-1] + 1 dp[i][j]=dp[i1][j1]+1

2. 字符不相等的情况

  • 条件text1[i-1] != text2[j-1]
  • 考虑 text1[0:i-1]text2[0:j] 的最长公共子序列。
  • 考虑 text1[0:i]text2[0:j-1] 的最长公共子序列。
    dp[i][j]=max⁡(dp[i−1][j],dp[i][j−1]) dp[i][j] = \max(dp[i-1][j], dp[i][j-1]) dp[i][j]=max(dp[i1][j],dp[i][j1])

综上,状态转移方程可以表示为:

dp[i][j]={dp[i−1][j−1]+1,如果 text1[i−1]=text2[j−1]max⁡(dp[i−1][j],dp[i][j−1]),如果 text1[i−1]≠text2[j−1] dp[i][j] = \begin{cases} dp[i-1][j-1] + 1, & \text{如果 } text1[i-1] = text2[j-1] \\ \max(dp[i-1][j], dp[i][j-1]), & \text{如果 } text1[i-1] \ne text2[j-1] \end{cases} dp[i][j]={dp[i1][j1]+1,max(dp[i1][j],dp[i][j1]),如果 text1[i1]=text2[j1]如果 text1[i1]=text2[j1]

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        @cache
        def dfs(i: int, j: int) -> int:
            if i < 0 or j < 0:
                return 0
            if text1[i] == text2[j]:
                return dfs(i - 1, j - 1) + 1
            return max(dfs(i - 1, j), dfs(i, j - 1))
        
        return dfs(len(text1) - 1, len(text2) - 1)
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        n, m = len(text1), len(text2)
        f = [[0] * (m + 1) for _ in range(n + 1)]
        for i, x in enumerate(text1):
            for j, y in enumerate(text2):
                if x == y:
                    f[i + 1][j + 1] = f[i][j] + 1 
                else:
                    f[i + 1][j + 1] = max(f[i][j + 1], f[i + 1][j])

        return f[n][m]

LeetCode-3177. 求出最长好子序列 II

  • 我们可以想到用 dp[i][j] 来表示以 nums[i] 结尾,其中有 j 个数字与其在序列中的后一个数字不相等的最长合法序列的长度。其中 i 的取值小于 nn 表示 nums 的长度),j 不超过 k。初始时,有: dp[i][0] = 1
  1. nums[i] != nums[x]

    对于此情况,可以维护一个长度为 k 的辅助数组 zd。其中 zd[j] 表示枚举到位置 i 之前,有 j 个数字与其在序列中的后一个不相等的最长合法序列的长度,那么可以直接写出转移:

    dp[i][j]=zd[j−1]+1 dp[i][j] = zd[j-1] + 1 dp[i][j]=zd[j1]+1

  2. nums[i] = nums[x]

    假设有下标 a < b < c,并且 nums[a] = nums[b] = nums[c],对于 c 来说如果选取由 a 转移过来计算答案,那么一定不如 a -> b -> c 更优,所以会选取下标最近的相同的数进行转移。针对这种情况,dp 使用哈希表维护能节省一些空间,并且在哈希表中用 nums[i] 替换 i。在每一次遍历 i 计算完后更新 zd,最后的 zd[k] 就是答案。

class Solution:
    def maximumLength(self, nums: List[int], k: int) -> int:
        fs = {}
        mx = [0] * (k + 2)

        for x in nums:
            if x not in fs:
                fs[x] = [0] * (k + 1)
            f = fs[x]
            for j in range(k, -1, -1):
                f[j] = max(f[j], mx[j]) + 1
                mx[j + 1] = max(mx[j + 1], f[j])
                
        return mx[-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值