2402_87073867
码龄119天
关注
提问 私信
  • 博客:4,394
    4,394
    总访问量
  • 7
    原创
  • 107,435
    排名
  • 46
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:云南省
  • 加入CSDN时间: 2024-09-02
博客简介:

2402_87073867的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    61
    当月
    0
个人成就
  • 获得70次点赞
  • 内容获得1次评论
  • 获得45次收藏
创作历程
  • 7篇
    2024年
成就勋章
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

窗口烟花,自带音乐

视频链接:https://www.bilibili.com/video/BV1yqz5YHEne/?
原创
发布博客 2024.11.26 ·
233 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

python肿瘤数据降维

from sklearn.decomposition import TruncatedSVD #执行截断奇异值分解。from sklearn.datasets import load_breast_cancer #加载数据集。ax.set_xlabel('第一成分') # 设置x轴标签。ax.set_ylabel('第二成分') # 设置y轴标签。ax.set_zlabel("第三成分") #设置z轴标签。# 创建截断奇异值分解对象,设置保留的主成分数量为2。X = load.data # 提取特征数据。
原创
发布博客 2024.11.25 ·
157 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

线性回归模型

线性回归是一种预测数值型数据的监督学习算法。它假设目标变量(因变量)与一个或多个自变量之间存在线性关系。线性回归模型通过寻找最佳拟合线(在多维空间中为超平面),来预测目标变量的值。
原创
发布博客 2024.09.17 ·
522 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

监督学习详解:从基础到应用

假设我们想要预测图片中的数字是几,这就是一个典型的分类问题。在数据集中,每个图片都被标注了对应的数字(0-9),模型通过学习这些图片及其标签,能够学会从新的图片中预测出数字。非监督学习(Unsupervised Learning)在机器学习领域有着广泛的应用场景,这些场景通常涉及到对未标记数据的学习和探索。监督学习广泛应用于各种预测和分类问题中,如预测股票价格、判断图片中的物体类型、推荐系统等。回归问题是一种预测数值型数据的监督学习方法。分类问题是监督学习中的另一大类问题,其目标是预测数据的类别标签。
原创
发布博客 2024.09.14 ·
1175 阅读 ·
5 点赞 ·
0 评论 ·
12 收藏

模型评估与模型参数选择:深入理解机器学习

由于我们的目标是让模型在未知数据上表现良好,因此泛化误差是衡量模型泛化能力的重要标准。过拟合是指模型在训练集上表现很好,但在测试集上表现不佳的现象。欠拟合则是指模型未能充分学习数据的特征,导致在训练集和测试集上的表现都不佳。目的:数据集划分的主要目的是将原始数据集分割成不同的部分,以便用于训练、验证和测试模型。:用于调整模型的超参数,确保模型在未知数据上表现最佳。:用于最终评估模型的效果,提供模型性能的最终指标,最终评估模型的泛化能力,如准确率、精确率、召回率和F1分数等。
原创
发布博客 2024.09.14 ·
1011 阅读 ·
25 点赞 ·
0 评论 ·
12 收藏

机器学习中的学习理论

我们在假设一个模型来拟合数据集时,需要找到最合适的模型,不断地扩大数据集、增加提取特征是见效甚微的方法,比较好的是对数据集进行合理的划分,将整个数据集划分为三个部分:训练集、交叉检验集和测试集。应用非常广泛,以下是一些常见的应用场景:1、用户行为分析:通过对用户行为数据的统计分析,我们可以了解用户的喜好和习惯,从而优化产品设计,提升用户体验。我们通常通过对样本的研究,来推断总体的性质。4、有监督的机器学习中,我们可以概述为通过很多有标记的数据,训练出一个模型,然后利用这个,对输入的X进行预测输出的Y。
原创
发布博客 2024.09.07 ·
424 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

机器学习算法与流程

聚类应用领域广泛,可以用于发现不同的企业客户群体特征、消费者行为分析、市场细分、交易数据分析、动植物种群分类、医疗领域的疾病诊断、环境质量检测等,还可用于互联网和电商领城的客户分析、行为特征分类等。在聚类的过程中,首先选择有效特征构成向量,然后按照欧氏距离或其他距离函数进行相似度计算,并划分聚类,通过对聚类结果进行评估,逐渐选代生成新的聚类。聚类方法可分为基于层次的聚类、基于划分的聚类、基于密度的聚类、基于约束的聚类、基于网络的聚类等。4、回归分析:线性回归、逻辑回归、多项式回归、岭回归、LASSO回归。
原创
发布博客 2024.09.07 ·
868 阅读 ·
14 点赞 ·
1 评论 ·
8 收藏