动态规划简介
动态规划(dynamic programming),指每一步的结果都和前面产生的结果有联系,即每一步都可以视作前面全部解的映射,步步相关,牵一发而动全身,故称作动态规划
动态规划与递归的区别
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
递归代码示例
int fib(int n) {
if(n==0)
return 0;
if(n==1)
return 1;
return fib(n-1)+fib(n-2);
}
动规示例:
int fib(int n) {
if(n==1||n==2) return 1;
else if(n==0) return 0;
int i,dp[n+1];
dp[0]=0;
dp[1]=1;
dp[2]=2;
for(i=2;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];}
return dp[n];
}
不难发现,递归的思路是从后往前,不断把大问题拆解成小问题,直到分解成基本情况,再一层层return回去。也就是说,它的逻辑是接受大问题,拆分大问题,最后通过细分的小问题的解得到大问题的解。
而动规的思路是得知递推关系式后,从已知情况向未知情况遍历,直到得到需要的结果为止。
一些动规的例题和答案
例题2:746. 使用最小花费爬楼梯 - 力扣(LeetCode)
int minCostClimbingStairs(int* cost, int costSize) {
int dp[10000]={0};//dp表示走到第i级台阶的最低花费
dp[0]=0;
dp[1]=0;
//dp[i]=min(dp[i-1]*cost[i-1],...)
for(int i=2;i<=costSize;i++)
dp[i]=(dp[i-1]+cost[i-1])>(dp[i-2]+cost[i-2])?(dp[i-2]+cost[i-2]):(dp[i-1]+cost[i-1]);
return dp[costSize];
}
int uniquePaths(int m, int n) {
int dp[n+2][m+2];
dp[1][1]=1;//dp[i][j]表示走到坐标(i,j)可能的路径数
for(int x=1;x<=n;x++){
for(int y=1;y<=m;y++){
if(x==1||y==1){
dp[x][y]=1;
continue;
}
dp[x][y]=dp[x-1][y]+dp[x][y-1];
}
}
return dp[n][m];
}
总结
不难看出,使用动规思路解题有两个关键。其一是想清楚动规数组的下标的意义,一般从题目求解的问题出发,求什么是什么。其二是找出递推关系,并保证每个数据都能正确被递推出,否则要对特例特殊处理。
动态规划:子序列问题
例题1:
请编写一个 C 语言程序来查找两个字符串的最长公共子串(由字符串中连续的一段字符组成的字符串)
输入两个字符串str1
和str2
, 字符串长度范围均为[0, 200)。
输出两个字符串的最长公共子串,如果不存在公共子串,则输出“没有公共子串”
;如果有多个最长公共子串,则输出str1
中从左至右第一个最长公共子串。
输入1
abcdef
zcdemf
输出1
cde
输入2
abc
de
输出示例2
没有公共子串
解题思路1:暴力枚举