略谈动态规划

动态规划简介

动态规划(dynamic programming),指每一步的结果都和前面产生的结果有联系,即每一步都可以视作前面全部解的映射,步步相关,牵一发而动全身,故称作动态规划

动态规划与递归的区别

例题1:509. 斐波那契数 - 力扣(LeetCode)

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

递归代码示例

int fib(int n) {
    if(n==0)
        return 0;
    if(n==1)
        return 1;
    return fib(n-1)+fib(n-2);
}

动规示例:

int fib(int n) {
        if(n==1||n==2) return 1;
    else if(n==0) return 0;
    int i,dp[n+1];
    dp[0]=0;
    dp[1]=1;
    dp[2]=2;
    for(i=2;i<=n;i++){
	dp[i]=dp[i-1]+dp[i-2];}
	return dp[n];
}

不难发现,递归的思路是从后往前,不断把大问题拆解成小问题,直到分解成基本情况,再一层层return回去。也就是说,它的逻辑是接受大问题,拆分大问题,最后通过细分的小问题的解得到大问题的解。

而动规的思路是得知递推关系式后,从已知情况向未知情况遍历,直到得到需要的结果为止。

一些动规的例题和答案

例题2:746. 使用最小花费爬楼梯 - 力扣(LeetCode)

int minCostClimbingStairs(int* cost, int costSize) {
    int dp[10000]={0};//dp表示走到第i级台阶的最低花费
    dp[0]=0;
    dp[1]=0;
    //dp[i]=min(dp[i-1]*cost[i-1],...)
    for(int i=2;i<=costSize;i++)
        dp[i]=(dp[i-1]+cost[i-1])>(dp[i-2]+cost[i-2])?(dp[i-2]+cost[i-2]):(dp[i-1]+cost[i-1]);
    return dp[costSize];
}

例题3:62. 不同路径 - 力扣(LeetCode)

int uniquePaths(int m, int n) {
    int dp[n+2][m+2];
    dp[1][1]=1;//dp[i][j]表示走到坐标(i,j)可能的路径数
    for(int x=1;x<=n;x++){
        for(int y=1;y<=m;y++){
            if(x==1||y==1){
                dp[x][y]=1;
                continue;
            }
            dp[x][y]=dp[x-1][y]+dp[x][y-1];
        }
    }
    return dp[n][m];
}

 总结

不难看出,使用动规思路解题有两个关键。其一是想清楚动规数组的下标的意义,一般从题目求解的问题出发,求什么是什么。其二是找出递推关系,并保证每个数据都能正确被递推出,否则要对特例特殊处理。

动态规划:子序列问题

例题1:

请编写一个 C 语言程序来查找两个字符串的最长公共子串(由字符串中连续的一段字符组成的字符串)

输入两个字符串str1str2, 字符串长度范围均为[0, 200)。

输出两个字符串的最长公共子串,如果不存在公共子串,则输出“没有公共子串”;如果有多个最长公共子串,则输出str1中从左至右第一个最长公共子串。

输入1

abcdef
zcdemf

输出1

cde

输入2

abc
de

输出示例2

没有公共子串

解题思路1:暴力枚举

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值