人工智能:
用人工的方法在机器(计算机)上实现的智能;或者说是人们使机器具有类似于人的智能。
人工智能学科:
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。
日常生活中的人工智能:
比如指纹、人脸识别解锁,人脸支付,商品推荐,智能物流,仓储机器人,短视频推荐,搜索排列,新闻推荐,智能助手,智能语音,图像编辑,智能美图等。
日常中的机械学习:
语音助手:像苹果的Siri、小米的小爱同学等语音助手,运用机器学习技术理解用户的语音指令。通过对大量语音数据的学习,语音助手能够识别不同的语音模式、口音和语言习惯,准确理解用户的需求并提供相应的服务,如设置提醒、查询信息、控制智能家居设备等。
训练过程:
1. 从一个随机初始化参数的模型开始,这个模型基本没有“智能”;
2. 获取一些数据样本(例如,音频片段以及对应的是或否标签);
3. 调整参数,使模型在这些样本中表现得更好;
4. 重复第2步和第3步,直到模型在任务中的表现令⼈满意。
机器学习中的关键组件
无论什么类型的机器学习问题,都会遇到这些组件:
1. 可以用来学习的数据(data);
2. 如何转换数据的模型(model);
3. ⼀个目标函数(objective function),用来量化模型的有效性;
4. 调整模型参数以优化目标函数的算法(algorithm)
每个数据集由一个个样本组成,大多时候,它们遵循独立同分布。样本有时也叫做数据点或者数据实例,通常每个样本由一组称为特征(features,或协变量(covariates))的属性组成。
数据:
当处理图像数据时,每一张单独的照片即为一个样本,它的特征由每个像素数值的有序列表示。
目标函数
定义一个目标函数,并优化它到最小值——损失函数。
预测数值任务——平方误差:预测值与实际值之差的平方。
预测分类任务——最⼩化错误率:预测与实际情况不符的样本⽐例。
损失函数是根据模型参数定义的,并取决于数据集。在一个数据集上,我们可以通过最⼩化总损失来学习模型参数的最佳值。
优化算法
当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最⼩化损失函数。深度学习中,大多流行的优化算法通常基于一种基本方法——梯度下降(gradient descent)