1、Hive基本概念
1.1.1 Hive简介
面试题:什么是hive?
1、hive是数据仓库建模的工具之一。
2、可以向hive传入一条交互式的sql,在海量数据中查询分析得到结果的平台。
1.1.2 为什么使用Hive?
直接使用hadoop的话,人员学习成本太高,项目要求周期太短,MapReduce实现复杂查询逻辑开发难度太大。如果使用hive的话,可以操作接口采用类SQL语法,提高开发能力,免去了写MapReduce,减少开发人员学习成本,功能扩展很方便(比如:开窗函数)。
1.1.3 Hive的特点:
1、可扩展性
Hive可以自由的扩展集群的规模,一般情况下不需要重启服务
2、延申性
Hive支持自定义函数,用户可以根据自己的需求来实现自己的函数
3、容错
即使节点出现错误,SQL仍然可以完成执行
1.1.4 Hive的优缺点:
优点:
1、操作接口采用类sql语法,提供快速开发的能力
2、避免了去写MapReduce,减少开发人员的学习成本
3、Hive的延迟性比较高,因此Hive常用于数据分析,适用于对实时性要求不高的场合
4、Hive 优势在于处理大数据,对于处理小数据没有优势,因为 Hive 的执行延迟比较高。(不断地开关JVM虚拟机)
5、Hive 支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
6、集群可自由扩展并且具有良好的容错性,节点出现问题SQL仍可以完成执行
缺点:
1、Hive的HQL表达能力有限
(1)迭代式算法无法表达 (反复调用,mr之间独立,只有一个map一个reduce,反复开关)
(2)数据挖掘方面不擅长
2、Hive 的效率比较低
(1)Hive 自动生成的 MapReduce 作业,不够智能化
(2)Hive 调优比较困难,不能像编写mapreduce一样精细,无法控制在map处理数据还是在reduce处理数据)
1.1.5 Hive和传统数据库对比
严格来说无法进行比较,hive是数据仓库建模的工具之一,并不是数据库。
1.1.6 Hive应用场景
日志分析:大部分互联网公司使用hive进行日志分析,如百度、淘宝等。
统计一个网站一个时间段内的pv,uv,SKU,SPU,SKC
多维度数据分析(数据仓库)
构建数据仓库
PV(Page View)访问量, 即页面浏览量或点击量,访问数据的次数,UV(Unique Visitor)独立访客,访问用户的个数。
1.2 Hive架构

1.2.1 Client
Hive允许client连接的方式有三个CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问 hive)。
1)client–需要下载安装包
2)JDBC/ODBC 也可以连接到Hive,用的比较多的是第二种 Hive Server2/beeline。
服务端启动hiveserver2服务:
nohup hive --service metastore &
nohup hiveserver2 &
1.2.2 Metastore
元数据包括表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型、表的数据所在目录等,主要用于存放数据库的建表语句等信息 ,推荐使用Mysql数据库存放数据。
1.2.3 Driver (sql语句是如何转化成MR任务的?)
1) 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST(从3.x版本之后,转换成一些stage),对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
2) 编译器(Physical Plan):将AST编译生成逻辑执行计划。
3) 优化器(Query Optimizer):对逻辑执行计划进行优化。
4) 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是 MR/Spark/flink。
1.2.4 数据处理
Hive的数据存储在HDFS中,计算由MapReduce完成。解释器、编译器、优化器完成HQL查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。
1.4 Hive的三种交互方式
1)第一种交互方式
shell交互Hive,用命令hive启动一个hive的shell命令行,在命令行中输入sql或者命令来和Hive交互。
服务端启动metastore服务(后台启动):nohup hive --service metastore &
进入命令:hive
退出命令行:quit;
2)第二种交互方式
Hive 启动服务器 ,其他机器可以通过客户端通过协议连接到服务器,来完成访问操作
服务端启动hiveserver2服务:
nohup hive --service metastore &
nohup hiveserver2 &
需要稍等一下,启动服务需要时间:
进入命令:1)先执行: beeline ,再执行: !connect jdbc:hive2://master:10000
2)或者直接执行: beeline -u jdbc:hive2://master:10000 -n root
退出命令行:!exit
3) 第三种交互方式
使用 –e 参数来直接执行hql的语句
bin/hive -e "show databases;"
vim hive.sql
create database bigdata30_test;
use bigdata30_test;
create table test1
(
id bigint,
name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
show tables;
hive -f hive.sql
1.5 Hive元数据
Hive元数据库中的一些重要的表结构及用途,方便SparkSQL、Hive等组件访问元数据库。
1、Hive数据库相关的元数据表(DBS、DATABASE_PARAMS)
DBS:该表存储Hive中所有数据库的基本信息。
DATABASE_PARAMS:该表存储数据库的相关参数。
2、 Hive表和视图相关的元数据表
TBLS:该表中存储Hive表,视图,索引表的基本信息。
TABLE_PARAMS:该表存储表/视图的属性信息。
3、 Hive文件存储信息相关的元数据表
SDS: 该表保存文件存储的基本信息,如INPUT_FORMAT、OUTPUT_FORMAT、是否压缩等。
SD_PARAMS: 该表存储Hive存储的属性信息。
SERDES:该表存储序列化使用的类信息。
SERDE_PARAMS:该表存储序列化的一些属性、格式信息,比如:行、列分隔符。
2、Hive的基本操作
2.1 Hive库操作
2.1.1 创建数据库
1)创建一个数据库 create database testdb(库名);
2)避免要创建的数据库已经存在错误,增加if not exists判断。
create database testdb(库名);
2.2.2 创建数据库和位置
create database if not exists bigdata30_test location '/bigdata30/xxxdb';
2.2.3 修改数据库
数据库的其他元数据信息都是不可更改的,包括数据库名和数据库所在的目录位置。
alter database dept set dbproperties('createtime'='20240610');
2.2.4 数据库详细信息
1)显示数据库(show)
show databases;
2)可以通过like进行过滤
show databases like 't*';
3)查看详情(desc)
desc database testdb;
4)切换数据库(use)
use bigdata30;
2.2.5 删除数据库
1)删除数据库最简写法
drop database testdb;
2)如果删除的数据库不存在,最好使用if exists判断数据库是否存在。否则会报错:FAILED: SemanticException [Error 10072]: Database does not exist: db_hive
drop database if exists testdb;
3)如果数据库不为空,使用cascade命令进行强制删除。
drop database if exists testdb cascade;
2.2 Hive数据类型
2.2.1 基础数据类型
| 类型 | Java数据类型 | 描述 |
| BIGINT | long | 64位有符号整型。取值范围:-2 63 +1~2 63 -1。 |
| DOUBLE | double | double |
| STRING | string | 字符串类型,目前长度限制为8MB。 |
| TINYINT | byte | 8位有符号整型。取值范围:-128~127。 |
| SMALLINT | short | 16位有符号整型。取值范围:-32768~32767。 |
| INT | int | 32位有符号整型。取值范围:-2 31 ~2 31 -1。 |
| BINARY | 二进制数据类型,目前长度限制为8MB。 | |
| FLOAT | float | 32位二进制浮点型。 |
| DECIMAL(precision,scale) | 10进制精确数字类型。precision:表示最多可以表示多少位的数字。取值范围:1 <= precision <= 38。scale:表示小数部分的位数。取值范围: 0 <= scale <= 38。如果不指定以上两个参数,则默认为decimal(10,0)。 | |
| VARCHAR(n) | 变长字符类型,n为长度。取值范围:1~65535。 | |
| CHAR(n) | 固定长度字符类型,n为长度。最大取值255。长度不足则会填充空格,但空格不参与比较。 | |
| DATE | 日期类型,格式为yyyy-mm-dd。取值范围:0000-01-01~9999-12-31。 | |
| DATETIME | 日期时间类型。取值范围:0000-01-01 00:00:00.000~9999-12-31 23.59:59.999,精确到毫秒。 | |
| TIMESTAMP | 与时区无关的时间戳类型 | |
| BOOLEAN | boolean | BOOLEAN类型。取值:True、False。 |
2.2.2 复杂数据类型
| 类型 | 定义方法 | 构造方法 |
|---|---|---|
| ARRAY | array<int>``array<struct<a:int, b:string>> | array(1, 2, 3) ;array(array(1, 2), array(3, 4)) |
| MAP | map<string, string>``map<smallint, array<string>> | map(“k1”, “v1”, “k2”, “v2”) ;map(1S, array(‘a', ‘b’), 2S, array(‘x’, ‘y’)) |
| STRUCT | struct<x:int, y:int> , struct<field1:bigint, field2:array<int>, named_struct(‘x’, 1, ‘y’, 2) |
数组:array< 所有类型 >;
Map < 基本数据类型,所有数据类型 >;
struct < 名:所有类型[注释] >;
uniontype< 所有类型,所有类型… >
2.3 Hive表操作
Hive的存储格式:
TEXTFILE 即正常的文本格式,是Hive默认文件存储格式,因为大多数情况下源数据文件都是以text文件格式保存(便于查看验数和防止乱码)。这种格式的表文件在HDFS上是明文,可用hadoop fs -cat命令查看,从HDFS上get下来后也可以直接读取。
ORCFile:ORC文件不仅仅是一种列式文件存储格式,最重要的是有着很高的压缩比,并且对于MapReduce来说是可切分(Split)的,所以在hive中使用orc作为表的文件存储格式,不仅很大程度的节省HDFS存储资源,而且对数据的查询和处理性能有非常大的提升。
RCFile:是Hadoop中第一个列文件格式。能够很好的压缩和快速的查询性能。通常写操作比较慢,比非列形式的文件格式需要更多的内存空间和计算量。ORC能很大程度的节省存储和计算资源,在读写时候需要消耗额外的CPU资源来压缩和解压缩,但这部分的CPU消耗是非常少的。
Parquet:parquet的灵感来自于2010年Google发表的Dremel论文,文中介绍了一种支持嵌套结构的存储格式,并且使用了列式存储的方式提升查询性能。Parquet仅仅是一种存储格式,它是语言、与平台无关,并且不需要和任何一种数据处理框架绑定。这也是parquet相较于orc的仅有优势:支持嵌套结构。不支持update操作(数据写成后不可修改),不支持ACID等。
SEQUENCEFile:SequenceFile是Hadoop API 提供的一种二进制文件,它将数据以<key,value>的形式序列化到文件中。这种二进制文件内部使用Hadoop 的标准的Writable 接口实现序列化和反序列化。它与Hadoop API中的MapFile 是互相兼容的。
AVRO:Avro是一种用于支持数据密集型的二进制文件格式。它的文件格式更为紧凑,若要读取大量数据时,Avro能够提供更好的序列化和反序列化性能。

结论:ORCFile存储文件读操作效率最高
耗时比较:ORC<Parquet<RC<Text

结论:ORCFile存储文件占用空间少,压缩效率高
占用空间:ORC<Parquet<RC<Text
2.3.1 创建表
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
字段解释说明:
- CREATE TABLE
创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
- EXTERNAL
关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)
创建内部表时,会将数据移动到数据仓库指向的路径(默认位置);
创建外部表时,仅记录数据所在的路径,不对数据的位置做任何改变。在
删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
- COMMENT:
为表和列添加注释。
- PARTITIONED BY
创建分区表
- CLUSTERED BY
创建分桶表
- SORTED BY
不常用
- STORED AS指定存储文件类型
常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE (列式存储格式文件)
如果文件数据是纯文本,可以使用STORED AS TEXTFILE。
如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
- LOCATION :
指定表在HDFS上的存储位置。
- LIKE
允许用户复制现有的表结构,但是不复制数据。
建表1:全部使用默认建表方式
create table students
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '_'; // 必选,指定列分隔符
建表2:指定location (这种方式也比较常用)
create table IF NOT EXISTS students2
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/bigdata30/input1';// 指定Hive表的数据的存储位置,一般在数据已经上传到hdfs
建表3:指定存储格式
create table IF NOT EXISTS testdb
(
id bigint,
name string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS ORC
LOCATION '/bigdata30/zheli'; // 指定储存格式为orcfile,inputFormat:RCFileInputFormat,outputFormat:RCFileOutputFormat,如果不指定,默认为textfile,注意:除textfile以外,其他的存储格式的数据都不能直接加载。
建表4:create table xxxx like table_name只想建表,不需要加载数据
create table students3 like students;
复杂人员信息表创建
create table IF NOT EXISTS person(
name string,
friends array<string>,
children map<string,int>,
address struct<street:string ,city:string>
)
row format delimited fields terminated by ',' -- 列与列之间的分隔符
collection items terminated by '_' -- 元素与元素之间分隔符
map keys terminated by ':' -- Map数据类型键与值之间的分隔符
lines terminated by '\n'; -- 行与行之间的换行符
zhangsan,lisi_wangwu,zhangsan:18_lisi:19,he fei_anhui
2.3.2 显示表
show tables; show tables like 'u*'; desc person(表名);//查看表详细信息 desc formatted students; // 更加详细
2.3.3 加载数据
1、使用hdfs dfs -put '本地数据' 'hive表对应的HDFS目录下'
2、使用 load data
下列命令需要在hive shell里执行
create table IF NOT EXISTS students4
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
// 将HDFS上的/xxx目录下面的数据 移动至 students表对应的HDFS目录下,注意是移动
load data inpath '/input1/students.txt' into table students;
// 清空表
truncate table students;
// 加上 local 关键字 可以将Linux本地目录下的文件 上传到 hive表对应HDFS 目录下 原文件不会被删除
load data local inpath '/usr/local/soft/data/students.txt' into table students;
// overwrite 覆盖加载
load data local inpath '/usr/local/soft/data/students.txt' overwrite into table students;
// 将 students表的数据插入到students2
insert into table students2 select * from students;
// 覆盖插入 把into 换成 overwrite
insert overwrite table students2 select * from students;
2.3.4 修改列
> 查询表结构
desc students;
> 添加列
alter table students2 add columns (education string);
> 查询表结构
desc students(表名);
> 更新列
alter table 表名 change education educationnew string;
2.3.5 删除表
drop table students;
2.4 Hive内外部表
面试题:内部表和外部表的区别?
内部表一删全删,hive表,MySQL中元数据,hdfs数据都不存在了,外部表删除hive表,数据仍然保存在hdfs中,不会删除。外部表在table前加上external,内部表不需要。
2.4.1 hive内部表
当创建好表的时候,HDFS会在当前表所属的库中创建一个文件夹
当设置表路径的时候,如果直接指向一个已有的路径,可以直接去使用文件夹中的数据
当load数据的时候,就会将数据文件存放到表对应的文件夹中
而且数据一旦被load,就不能被修改
我们查询数据也是查询文件中的文件,这些数据最终都会存放到HDFS
当我们删除表的时候,表对应的文件夹会被删除,同时数据也会被删除
默认建表的类型就是内部表
create table students_internal
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/input2';
hive> dfs -put /usr/local/soft/data/students.txt /input2/;
2.4.1 hive外部表
外部表因为是指定其他的hdfs路径的数据加载到表中,所以hive不完全独占这份数据
删除hive表的时候,数据仍然保存在hdfs中,不会删除。
create external table students_external
(
id bigint,
name string,
age int,
gender string,
clazz string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/input3';
hive> dfs -put /usr/local/soft/data/students.txt /input3/;
2.5 Hive导出数据
将表中数据备份
2.5.1 将查询结果存放到本地
//导出查询结果的数据(导出到Node01上)
insert overwrite local directory '/usr/local/soft/bigdata30/hive_out1/person_data' select * from t_person;
insert overwrite local directory '/usr/local/soft/bigdata30/hive_out1/stu1'
ROW FORMAT DELIMITED fields terminated by ','
lines terminated by '\n'
select clazz,count(1) as counts from students group by clazz;
2.5.2 按照指定的方式将数据输出到本地
-- 创建存放数据的目录
mkdir -p /usr/local/soft/xxx
-- 导出查询结果的数据
insert overwrite local directory '/usr/local/soft/bigdata30/hive_out1/person_data'
ROW FORMAT DELIMITED fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
lines terminated by '\n'
select * from t_person;
2.5.3 将查询结果输出到HDFS
export table t_person to "bigdata30/copy/ ";
2.5.4 将表结构和数据同时备份
将数据导出到HDFS
//创建存放数据的目录
hdfs dfs -mkdir -p /usr/local/soft/bigdata30/copy
//导出查询结果的数据
export table t_person to '/shujia/bigdata30/copy';
删除表结构
drop table table_name;
4295

被折叠的 条评论
为什么被折叠?



