集群搭建-standalone

以下是Spark Standalone集群搭建的关键步骤(基于Linux系统):

 

一、环境准备

 

1. 安装Java

 

- 确保所有节点安装JDK 8+,配置 JAVA_HOME 环境变量。

 

2. 关闭防火墙

bash

systemctl stop firewalld && systemctl disable firewalld

 

 

3. 配置SSH免密登录

 

- 主节点生成密钥并分发到所有从节点:

bash

ssh-keygen -t rsa # 按提示完成,不设密码  

ssh-copy-id slave1 # 替换为从节点主机名/IP  

 

 

二、下载与解压Spark

 

1. 下载Spark包

 

- 官网下载对应版本(如 spark-3.5.0-bin-hadoop3 ),上传至主节点。

 

2. 解压并配置

bash

tar -zxvf spark-3.5.0-bin-hadoop3.tgz -C /opt  

cd /opt/spark-3.5.0-bin-hadoop3/conf  

cp spark-env.sh.template spark-env.sh  

 

 

 

- 编辑 spark-env.sh ,添加:

bash

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk # 替换为实际路径  

export SPARK_MASTER_IP=master_hostname # 主节点主机名/IP  

export SPARK_WORKER_MEMORY=2g # 从节点内存(按需调整)  

 

 

三、配置集群节点

 

1. 修改 slaves 文件

bash

cp slaves.template slaves  

echo "slave1" >> slaves # 添加从节点主机名/IP,每行一个  

echo "slave2" >> slaves  

 

 

2. 分发Spark到从节点

bash

scp -r /opt/spark-3.5.0-bin-hadoop3 slave1:/opt  

scp -r /opt/spark-3.5.0-bin-hadoop3 slave2:/opt  

 

 

四、启动集群

 

1. 启动主节点

bash

cd /opt/spark-3.5.0-bin-hadoop3  

sbin/start-master.sh  

 

 

2. 启动从节点

bash

sbin/start-slaves.sh  

 

 

3. 验证状态

 

- 主节点Web界面: http://master_ip:8080 ,查看从节点是否在线。

 

五、常用操作

 

- 停止集群:

bash

sbin/stop-slaves.sh && sbin/stop-master.sh  

 

 

- 提交任务:

bash

bin/spark-submit \  

  --class org.apache.spark.examples.SparkPi \  

  --master spark://master_ip:7077 \  

  ./examples/jars/spark-examples_*.jar 10  

 

 

注意事项

 

- 确保所有节点时间同步(可使用 ntp 服务)。

 

- 从节点需预先创建与主节点相同的用户和目录权限。

 

- 内存和CPU资源根据实际硬件调整( SPARK_WORKER_CORES 参数)。

 

提供了一个详细的MATLAB仿真程序,用于实现自回归(AR)模型的功率谱估计。该程序基于经典的数字信号处理教材——《数字信号处理理论、算法与实现》第三版中的相关内容(第545-547页),旨在帮助学习者理解和实践AR模型在功率谱估计中的应用。 简介 AR模型是一种常用的时间序列分析方法,通过建立当前值与其过去值之间的线性关系来描述时间序列的动态特性。功率谱估计是信号处理中的关键环节,用于揭示信号频率成分的分布。本仿真通过自相关方法实现AR模型参数的估计,并进而计算信号的功率谱。 特点 含详细注释:代码中添加了丰富的注释,便于初学者理解每一步的计算逻辑和目的。 参数可调:用户可根据需要调整AR模型的阶数(p值)、信号长度等参数,以适应不同的信号分析需求。 理论联系实际:通过将书本知识转化为实践操作,加深对AR模型及其在功率谱估计中应用的理解。 使用说明 环境要求:确保你的计算机上已安装MATLAB,并且版本适合运行提供的脚本。 加载脚本:将提供的MATLAB文件导入到MATLAB的工作环境中。 修改配置:根据需要修改代码中的参数配置,如AR模型的阶数等。 运行仿真:执行脚本,观察并分析输出结果,包括自回归模型的系数以及估算出的功率谱。 学习与分析:通过对比不同参数下的结果,深入理解AR模型在功率谱估计中的行为。 注意事项 在使用过程中,可能需要基础的数字信号处理知识以便更好地理解代码背后的数学原理。 请确保你的MATLAB环境已正确设置,能够支持脚本中的所有函数和运算。 结论 此资源对于研究信号处理、通信工程或是进行相关学术研究的学生和科研人员来说是一个宝贵的工具。它不仅提供了理论知识的具体实现,也是提升实践技能的优秀案例。通过动手操作,你将更加熟练地掌握AR模型及其在功率谱估计中的应用技巧。 开始探索,深入了解AR模型的力量,解开信号隐藏的秘密吧!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值