机器学习的算法与流程

机器学习的主要流程是明确分析目标、数据收集、数据预处理、建模分析、结果评估、部

署使用以及学习更新。

机器学习的流程

1.明确数据分析目标

2.数据收集

3.数据预处理

4.数据建模

5.效果评估

6.部署使用 更新

机器学习的算法

1.分类算法;分类就是通过分析训练集中的数据,为每个类 别做出准确的描述或建立分析模型或挖掘出分 类规则,然后用这个分类规则对其它数据对象 进行分类。

常用分类算法典型应用;支持向量机,决策树,Bayesian网络.

2.聚类算法;聚类就是把整个数据分成不同的组,并使组与组之间的差距尽可大,组内数据的差异尽可能小。

常用聚类算法典型应用;K-means

层次聚类(Hierarchical Method)

BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)

CURE(Clustering Using Representatives)

基于划分的聚类

K均值(K-Means)

基于密度的聚类

DBSCAN(Density-based spatial clustering of applications with noise)

OPTICS(Ordering Points To Identify the Clustering

3.回归分析;是一种研究自变量和因变量之间关系 的预测模型,用于分析当自变量发生变化时, 因变量的变化值。

4推荐算法基于内容的推荐 算法应用场景: 适用于物品具有 丰富属性信息的场景,如文章、 新闻、文档等。

机器学习常见问题

1.数据质量问题与预处理

2.机器学习常见陷阱

3.机器学习方法的选择

4.机器学习结果的评价

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值