机器学习的主要流程是明确分析目标、数据收集、数据预处理、建模分析、结果评估、部
署使用以及学习更新。
机器学习的流程
1.明确数据分析目标
2.数据收集
3.数据预处理
4.数据建模
5.效果评估
6.部署使用 更新
机器学习的算法
1.分类算法;分类就是通过分析训练集中的数据,为每个类 别做出准确的描述或建立分析模型或挖掘出分 类规则,然后用这个分类规则对其它数据对象 进行分类。
常用分类算法典型应用;支持向量机,决策树,Bayesian网络.
2.聚类算法;聚类就是把整个数据分成不同的组,并使组与组之间的差距尽可大,组内数据的差异尽可能小。
常用聚类算法典型应用;K-means
层次聚类(Hierarchical Method)
BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)
CURE(Clustering Using Representatives)
基于划分的聚类
K均值(K-Means)
基于密度的聚类
DBSCAN(Density-based spatial clustering of applications with noise)
OPTICS(Ordering Points To Identify the Clustering
3.回归分析;是一种研究自变量和因变量之间关系 的预测模型,用于分析当自变量发生变化时, 因变量的变化值。
4推荐算法;基于内容的推荐 算法应用场景: 适用于物品具有 丰富属性信息的场景,如文章、 新闻、文档等。
机器学习常见问题
1.数据质量问题与预处理
2.机器学习常见陷阱
3.机器学习方法的选择
4.机器学习结果的评价
1710

被折叠的 条评论
为什么被折叠?



