关于经典的DP问题模型

一.关于最长上升子序列问题:

思路如图:

我们可以定义一个dp数组去存放个数

代码如下

#include <iostream>
using namespace std;
const int Max = 1e5+10;
int arr[Max],dp[Max] ;

int main()
{int n;
cin>>n;
for(int i =1;i<=n;i++){
  cin>>arr[i];
}
for(int i = 1;i<=n;i++){
  dp[i] = 1;
  for(int j = 1;j<i;j++){
    if(arr[i]>arr[j]){
      dp[i] = max(dp[j]+1,dp[i]);
    }
  }
  
}
int ans = 0;
for(int i = 1;i<=n;i++){
    ans = max(ans,dp[i]);
  }
cout<<ans<<" ";
  // 请在此输入您的代码
  return 0;
}

01背包

一维模板

题目:

有 NN 件物品和一个体积为 MM 的背包。第 ii 个物品的体积为 vivi​,价值为 wiwi​。每件物品只能使用一次。

请问可以通过什么样的方式选择物品,使得物品总体积不超过 MM 的情况下总价值最大,输出这个最大价值即可。

输入格式

第一行输入两个正整数 N,MN,M。(1≤N,M≤1000)(1≤N,M≤1000)

接下来 NN 行,每行输入两个整数 vi,wivi​,wi​。(0≤vi,wi≤1000)(0≤vi​,wi​≤1000)

输出格式

输出一个整数,表示符合题目要求的最大价值。

样例输入

4 5
1 2
2 4
3 4
4 5

样例输出

8

代码

#include <iostream>
using namespace std;
int n,m;
int dp[10010];
int v[10010],w[10010];
int main()
{ cin>>n>>m;
for(int i = 1;i<=n;i++){
  cin>>v[i]>>w[i];
}
for(int i = 1;i<=n;i++){
  for(int j = m;j>=v[i];j--){
dp[j] = max(dp[j-v[i]]+w[i],dp[j]);
  }
}
cout<<dp[m];
  // 请在此输入您的代码
  return 0;
}

注意:如果是完全背包的话,就将第二成循环变成正向的就行;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值