文章参考来源代码随想录
题目来源leetcood
62.不同路径
动规五部曲:
1.确定dp数组以及下标的含义:(0,0)到(i,j)位置的路径数位dp[i][j]
2.确定递推公式:
dp[i][j]=dp[i-1][j]+dp[i][j-1];
3.dp数组的初始化:因为(0,0)到第一行和第一列都只有一种方法,所以第一行和第一列都初始化为1
4.确定遍历顺序:从左上到右下,所以这里从左到右,一层一层遍历即可
5.举例推导dp数组:
需要注意点:
递推公式递推的数据是从初始化的数后一位数据开始更新(即循环从1开始)
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>>dp(m,vector<int>(n,0));
for(int i=0;i<m;i++)dp[i][0]=1;
for(int j=0;j<n;j++)dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
63. 不同路径 II
动规五部曲:
1.确定dp数组以及下标的含义:(0,0)到(i,j)位置的路径数位dp[i][j]
2.确定递推公式:
当不存在障碍时dp[i][j]=dp[i-1][j]+dp[i][j-1];
3.dp数组的初始化:因为(0,0)到第一行和第一列都只有一种方法,当不存在障碍时,初始化为1
4.确定遍历顺序:从左上到右下,所以这里从左到右,一层一层遍历即可
5.举例推导dp数组:
需要注意的点:
初始化时,判断有无障碍要放入循环里写,因为第一行和第一列原本就一种路径,要是存在障碍,就走不了了,因此循环里的条件要同时满足小于长度且不存在障碍。
输入二维数组
m = obstacleGrid.size()获取宽
n = obstacleGrid[0].size()获取长
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1)
return 0;
vector<vector<int>>dp(m,vector<int>(n,0));
for(int i=0;i<m&&obstacleGrid[i][0]==0;i++)dp[i][0]=1;
for(int j=0;j<n&&obstacleGrid[0][j]==0;j++)dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(obstacleGrid[i][j]==0)dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
343.整数拆分
动规五部曲:
1.确定dp数组以及下标的含义:以i为目标数进行整数拆分所得到的最大整数dp[i]
2.确定递推公式:本题没有讲最多可以有几个数相乘所以这里分为两种;
两数相乘(i-j)*j;
两数及以上相乘:dp[i-j]*j;(这里的dp就可以视为拆分了)
如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。
所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});
那么在取最大值的时候,为什么还要比较dp[i]呢?
因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。
3.dp数组的初始化:
dp[0],dp[1]都是无意义的(拆分0和拆分1的最大乘积是无解的),而dp[2]由题意知应该初始化为1;
4.确定遍历顺序:
由递推公式dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j})知:dp[i]要依靠dp[i-j],先有dp[i - j]再有dp[i]。所以这里是从前往后遍历
5.举例推导dp数组:
举例当n为10 的时候,dp数组里的数值,如下:
class Solution {
public:
int integerBreak(int n) {
vector<int>dp(n+1);
dp[2]=1;
for(int i=3;i<=n;i++){
for(int j=1;j<i-1;j++){
dp[i]=max(dp[i],max(dp[i-j]*j,(i-j)*j));
}
}
return dp[n];
}
};
需要注意的点:
遍历时:
注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。
j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1
至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。
优化:
for (int i = 3; i <= n ; i++) {
for (int j = 1; j <= i / 2; j++) {
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
}
}
因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。
例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。
只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。
那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。
96.不同的二叉搜索树
分析:
了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:
n为1的时候有一棵树,n为2有两棵树,这个是很直观的。
当3为头结点的时候,其左子树有两个节点,看这两个节点的布局和n为2的时候两棵树的布局也是一样的
当2为头结点的时候,其左右子树都只有一个节点,布局和n为1的时候只有一棵树的布局也一样的
发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。
思考到这里,这道题目就有眉目了。
dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
动规五部曲 :
1.确定dp数组以及下标的含义:1到i的节点所能构成树的数量/i个不同元素节点组成的二叉搜索树的个数为dp[i]
2.确定递推公式:
由上述分析知: dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]
所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量
3.dp数组的初始化:
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。
0个节点只能组成一颗空树,因此初始化为1
4.确定遍历顺序:
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。
那么遍历i里面每一个数作为头结点的状态,用j来遍历
5.举例推导dp数组
n为5时候的dp数组状态如图:
class Solution {
public:
int numTrees(int n) {
vector<int>dp(n+1);
dp[0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
dp[i]+=dp[j-1]*dp[i-j];
}
}
return dp[n];
}
};