动态规划part02

文章参考来源代码随想录

题目来源leetcood

62.不同路径

动规五部曲:

1.确定dp数组以及下标的含义:(0,0)到(i,j)位置的路径数位dp[i][j]

2.确定递推公式

dp[i][j]=dp[i-1][j]+dp[i][j-1];

3.dp数组的初始化:因为(0,0)到第一行和第一列都只有一种方法,所以第一行和第一列都初始化为1

4.确定遍历顺序:从左上到右下,所以这里从左到右,一层一层遍历即可

5.举例推导dp数组

需要注意点:

递推公式递推的数据是从初始化的数后一位数据开始更新(即循环从1开始

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>>dp(m,vector<int>(n,0));
        for(int i=0;i<m;i++)dp[i][0]=1;
        for(int j=0;j<n;j++)dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

63. 不同路径 II

动规五部曲:

1.确定dp数组以及下标的含义:(0,0)到(i,j)位置的路径数位dp[i][j]

2.确定递推公式

当不存在障碍时dp[i][j]=dp[i-1][j]+dp[i][j-1];

3.dp数组的初始化:因为(0,0)到第一行和第一列都只有一种方法,当不存在障碍时,初始化为1

4.确定遍历顺序:从左上到右下,所以这里从左到右,一层一层遍历即可

5.举例推导dp数组

 需要注意的点:

初始化时,判断有无障碍要放入循环里写,因为第一行和第一列原本就一种路径,要是存在障碍,就走不了了,因此循环里的条件要同时满足小于长度且不存在障碍。

输入二维数组

m = obstacleGrid.size()获取宽

 n = obstacleGrid[0].size()获取长

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) 
            return 0;
        vector<vector<int>>dp(m,vector<int>(n,0));
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++)dp[i][0]=1;
        for(int j=0;j<n&&obstacleGrid[0][j]==0;j++)dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0)dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

343.整数拆分

动规五部曲:

1.确定dp数组以及下标的含义:以i为目标数进行整数拆分所得到的最大整数dp[i]

2.确定递推公式:本题没有讲最多可以有几个数相乘所以这里分为两种;

两数相乘(i-j)*j;

两数及以上相乘:dp[i-j]*j;(这里的dp就可以视为拆分了)

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

3.dp数组的初始化:

dp[0],dp[1]都是无意义的(拆分0和拆分1的最大乘积是无解的),而dp[2]由题意知应该初始化为1;

4.确定遍历顺序:

由递推公式dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j})知:dp[i]要依靠dp[i-j],先有dp[i - j]再有dp[i]。所以这里是从前往后遍历

5.举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:

343.整数拆分

class Solution {
public:
    int integerBreak(int n) {
        vector<int>dp(n+1);
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<i-1;j++){
                dp[i]=max(dp[i],max(dp[i-j]*j,(i-j)*j));
            }
        }
        return dp[n];
    }
};

 需要注意的点:

遍历时:

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

优化:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j <= i / 2; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

96.不同的二叉搜索树

分析:

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:

96.不同的二叉搜索树

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

96.不同的二叉搜索树1

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局和n为2的时候两棵树的布局也是一样的

当2为头结点的时候,其左右子树都只有一个节点,布局和n为1的时候只有一棵树的布局也一样的

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

动规五部曲 :

1.确定dp数组以及下标的含义:1到i的节点所能构成树的数量/i个不同元素节点组成的二叉搜索树的个数为dp[i] 

2.确定递推公式:

由上述分析知: dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

 3.dp数组的初始化:

初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

0个节点只能组成一颗空树,因此初始化为1

4.确定遍历顺序:

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历

5.举例推导dp数组

n为5时候的dp数组状态如图:

96.不同的二叉搜索树3

 

class Solution {
public:
    int numTrees(int n) {
        vector<int>dp(n+1);
        dp[0]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                dp[i]+=dp[j-1]*dp[i-j];
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值