动态规划part11

文章参考来源代码随想录

1143.最长公共子序列

不连续子序列最长公共部分

动规五部曲:

1.确定dp数组以及下标的含义:

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

其实就是简化了dp数组第一行和第一列的初始化逻辑。

2,确定递推公式:

由于这里是不连续的,所以不能和上文那题一样,这里要分类讨论

1.test1[i-1]==test2[j-1],dp[i][j]=dp[i-1][j-1]+1;

2.不等,这里就要取test1【0,i-1】与test2【0,j-2】的最长公共子序列以及test1【0.i-2】与test2【0,j-2】的最长公共子序列,两者取最大。

3.dp如何初始化:

根据含义和递推公式去初始化

先看看dp[i][0]

text1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

4.确定遍历顺序:

从前往后,从上到下

5.举例推导dp数组:

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

1143.最长公共子序列1

最后红框dp[text1.size()][text2.size()]为最终结果

代码

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n1=text1.size()+1;
        int n2=text2.size()+1;
        vector<vector<int>>dp(n1,vector<int>(n2,0));
        for(int i=1;i<n1;i++){
            for(int j=1;j<n2;j++){
                if(text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
            }
        }
        return dp[n1-1][n2-1];
    }
};

1035.不相交的线

直线不能相交,这就是说明在字符串nums1中 找到一个与字符串nums2相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,连接相同数字的直线就不会相交

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度 

所以说这题本质就和上一题一样

代码

class Solution {
public:
    int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
        int n1=nums1.size()+1;
        int n2=nums2.size()+1;
        vector<vector<int>>dp(n1,vector<int>(n2,0));
        for(int i=1;i<n1;i++){
            for(int j=1;j<n2;j++){
                if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
            }
        }
        return dp[n1-1][n2-1];
    }
};

53. 最大子序和

本题要求子序列连续

贪心算法:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result=INT_MIN;
        int count=0;
        for(int i=0;i<nums.size();i++){
            count+=nums[i];
            if(result<count)result=count;
            if(count<=0)count=0;
        }
        return result;
    }
};

动规五部曲:

1.确定dp数组以及下标的含义:

0到i的序列,最大子序列为dp[i]

2,确定递推公式:

当dp[i-1]<0时,应该重新计数,即dp[i-1]置0;

dp[i]=dp[i-1]+nums[i];

或者使用dp[i] = max(dp[i - 1] + nums[i], nums[i])

3.dp如何初始化:

dp[0]=nums[0],其余初始化为0;

4.确定遍历顺序:

从前往后

5.举例推导dp数组:

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 

53.最大子序和(动态规划)

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]。

代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        vector<int>dp(n,0);
        dp[0]=nums[0];
        int result=nums[0];
        for(int i=1;i<n;i++){
            if(dp[i-1]<0)dp[i-1]=0;
            dp[i]=dp[i-1]+nums[i];
            if(result<dp[i])result=dp[i];
        }
        return result;
    }
};

392.判断子序列

动规五部曲:

1.确定dp数组以及下标的含义:

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

2,确定递推公式:

if (s[i - 1] == t[j - 1]) t中找到了一个字符在s中也出现了,dp[i][j] = dp[i - 1][j - 1] + 1;

if (s[i - 1] != t[j - 1]) 此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

3.dp如何初始化:

dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

4.确定遍历顺序:

从上到下,从左到右

5.举例推导dp数组:

以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:

392.判断子序列2

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

代码

class Solution {
public:
    bool isSubsequence(string s, string t) {
        int n1=s.size()+1;
        int n2=t.size()+1;
        vector<vector<int>>dp(n1,vector<int>(n2,0));
        for(int i=1;i<n1;i++){
            for(int j=1;j<n2;j++){
                if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;
                else dp[i][j]=dp[i][j-1];
            }
        }
        return s.size()==dp[n1-1][n2-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值