文章参考来源代码随想录
1143.最长公共子序列
不连续子序列最长公共部分
动规五部曲:
1.确定dp数组以及下标的含义:
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
其实就是简化了dp数组第一行和第一列的初始化逻辑。
2,确定递推公式:
由于这里是不连续的,所以不能和上文那题一样,这里要分类讨论
1.test1[i-1]==test2[j-1],dp[i][j]=dp[i-1][j-1]+1;
2.不等,这里就要取test1【0,i-1】与test2【0,j-2】的最长公共子序列以及test1【0.i-2】与test2【0,j-2】的最长公共子序列,两者取最大。
3.dp如何初始化:
根据含义和递推公式去初始化
先看看dp[i][0]
text1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。
4.确定遍历顺序:
从前往后,从上到下
5.举例推导dp数组:
以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:
最后红框dp[text1.size()][text2.size()]为最终结果
代码
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int n1=text1.size()+1;
int n2=text2.size()+1;
vector<vector<int>>dp(n1,vector<int>(n2,0));
for(int i=1;i<n1;i++){
for(int j=1;j<n2;j++){
if(text1[i-1]==text2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
}
}
return dp[n1-1][n2-1];
}
};
1035.不相交的线
直线不能相交,这就是说明在字符串nums1中 找到一个与字符串nums2相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,连接相同数字的直线就不会相交
本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度
所以说这题本质就和上一题一样
代码
class Solution {
public:
int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
int n1=nums1.size()+1;
int n2=nums2.size()+1;
vector<vector<int>>dp(n1,vector<int>(n2,0));
for(int i=1;i<n1;i++){
for(int j=1;j<n2;j++){
if(nums1[i-1]==nums2[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
}
}
return dp[n1-1][n2-1];
}
};
53. 最大子序和
本题要求子序列连续
贪心算法:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result=INT_MIN;
int count=0;
for(int i=0;i<nums.size();i++){
count+=nums[i];
if(result<count)result=count;
if(count<=0)count=0;
}
return result;
}
};
动规五部曲:
1.确定dp数组以及下标的含义:
0到i的序列,最大子序列为dp[i]
2,确定递推公式:
当dp[i-1]<0时,应该重新计数,即dp[i-1]置0;
dp[i]=dp[i-1]+nums[i];
或者使用dp[i] = max(dp[i - 1] + nums[i], nums[i])
3.dp如何初始化:
dp[0]=nums[0],其余初始化为0;
4.确定遍历顺序:
从前往后
5.举例推导dp数组:
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。
在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。
那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。
所以在递推公式的时候,可以直接选出最大的dp[i]。
代码
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n=nums.size();
vector<int>dp(n,0);
dp[0]=nums[0];
int result=nums[0];
for(int i=1;i<n;i++){
if(dp[i-1]<0)dp[i-1]=0;
dp[i]=dp[i-1]+nums[i];
if(result<dp[i])result=dp[i];
}
return result;
}
};
392.判断子序列
动规五部曲:
1.确定dp数组以及下标的含义:
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
2,确定递推公式:
if (s[i - 1] == t[j - 1]) t中找到了一个字符在s中也出现了,dp[i][j] = dp[i - 1][j - 1] + 1;
if (s[i - 1] != t[j - 1]) 此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
3.dp如何初始化:
dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。
4.确定遍历顺序:
从上到下,从左到右
5.举例推导dp数组:
以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:
dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。
代码
class Solution {
public:
bool isSubsequence(string s, string t) {
int n1=s.size()+1;
int n2=t.size()+1;
vector<vector<int>>dp(n1,vector<int>(n2,0));
for(int i=1;i<n1;i++){
for(int j=1;j<n2;j++){
if(s[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=dp[i][j-1];
}
}
return s.size()==dp[n1-1][n2-1];
}
};