配置环境
1.配置新的虚拟环境
win+R输入cmd打开终端
输入:
conda create --name my_yolov11 python=3.10
2.下载库
torch官网:https://pytorch.org/
找到自己cuda对应的版本下载

下载其他的库
# YOLOv11 完整依赖列表
ultralytics>=8.0.100 # YOLO官方库核心功能
opencv-python>=4.8.0 # 图像处理基础库
# PyTorch及相关依赖(根据CUDA版本调整)
torch>=2.0.0 # 深度学习框架
torchvision>=0.15.0 # 计算机视觉扩展
# 数据处理与可视化
matplotlib>=3.3.0 # 图表绘制
numpy>=1.20.0 # 数值计算
pandas>=1.1.0 # 数据表格处理
seaborn>=0.11.0 # 高级统计可视化
# 工具与辅助库
tqdm>=4.41.0 # 训练进度条
scipy>=1.5.0 # 科学计算工具
requests>=2.23.0 # HTTP请求(模型下载等)
thop>=0.1.1 # 模型计算量(FLOPs)分析
psutil>=5.7.0 # 系统资源监控
# 配置与导出
pyyaml>=5.3.1 # YAML配置文件解析
tensorboard>=2.4.1 # 训练过程可视化
onnx>=1.10.0 # 模型导出为ONNX格式
onnxruntime>=1.10.0 # ONNX模型推理引擎
protobuf<=3.20.1 # 协议缓冲区(避免版本冲突)
packaging>=20.9 # 版本号解析工具
不用一个一个下载,做成requirements.txt放到项目文件夹里面打开终端激活环境输入指令pip install requirements.txt
2.下载模型
1.打开git搜索yolov11,下载数据集
网址:https://github.com/emptysoal/TensorRT-YOLO11

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



