yolov11训练仅限于跑通目标检测

配置环境

1.配置新的虚拟环境

win+R输入cmd打开终端
输入:

conda create --name my_yolov11 python=3.10

2.下载库

torch官网:https://pytorch.org/
找到自己cuda对应的版本下载

下载其他的库

# YOLOv11 完整依赖列表
ultralytics>=8.0.100  # YOLO官方库核心功能
opencv-python>=4.8.0  # 图像处理基础库

# PyTorch及相关依赖(根据CUDA版本调整)
torch>=2.0.0  # 深度学习框架
torchvision>=0.15.0  # 计算机视觉扩展

# 数据处理与可视化
matplotlib>=3.3.0  # 图表绘制
numpy>=1.20.0  # 数值计算
pandas>=1.1.0  # 数据表格处理
seaborn>=0.11.0  # 高级统计可视化

# 工具与辅助库
tqdm>=4.41.0  # 训练进度条
scipy>=1.5.0  # 科学计算工具
requests>=2.23.0  # HTTP请求(模型下载等)
thop>=0.1.1  # 模型计算量(FLOPs)分析
psutil>=5.7.0  # 系统资源监控

# 配置与导出
pyyaml>=5.3.1  # YAML配置文件解析
tensorboard>=2.4.1  # 训练过程可视化
onnx>=1.10.0  # 模型导出为ONNX格式
onnxruntime>=1.10.0  # ONNX模型推理引擎
protobuf<=3.20.1  # 协议缓冲区(避免版本冲突)
packaging>=20.9  # 版本号解析工具

不用一个一个下载,做成requirements.txt放到项目文件夹里面打开终端激活环境输入指令pip install requirements.txt

2.下载模型

1.打开git搜索yolov11,下载数据集
网址:https://github.com/emptysoal/TensorRT-YOLO11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值