leetcode算法刷题的第三十五天

股票问题是动态规划的一个系列问题,前两道题目不算很难,第三题有难度。

1.leetcode 121.买卖股票的最佳时机

题目链接

这里先给出力扣灵神的代码,致敬一波。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int ans=0;
        int min_price=prices[0];
        for(int i=0;i<prices.size();i++){
            ans=max(ans,prices[i]-min_price);
            min_price=min(min_price,prices[i]);
        }
        return ans;
    }
};

下面的代码是暴力解法,虽然能得出我们想要的答案,但是在力扣上超时了。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int sum=0;
        for(int i=0;i<prices.size();i++){
            for(int j=i+1;j<prices.size();j++){
                sum=max(sum,prices[j]-prices[i]);
            }
        }
        return sum;
    }
};

当然这个题目也可以用贪心算法。

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。接下来就是具体代码。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low=INT_MAX;
        int ans=0;
        for(int i=0;i<prices.size();i++){
            low=min(low,prices[i]);// 取最左最小价格
            ans=max(ans,prices[i]-low);// 直接取最大区间利润
        }
        return ans;
    }
};

接下来就是动态规划的做法了。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len=prices.size();
        if(len==0) return 0;
        vector<vector<int>> dp(len,vector<int>(2));
        dp[0][0]-=prices[0];
        dp[0][1]=0;
        for(int i=1;i<len;i++){
            dp[i][0]=max(dp[i-1][0],-prices[i]);
            dp[i][1]=max(dp[i-1][1],prices[i]+dp[i-1][0]);
        }
        return dp[len-1][1];
    }
};

思路总结:依旧是动态规划五部曲。

第一,确定dp数组以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

第二,确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递推公式我们就分析完了

第三,dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

第四,确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

第五,举例推导dp数组

dp[5][1]就是最终结果。

为什么不是dp[5][0]呢?

因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!

个人认为力扣灵神和贪心算法的做法适合初学者!

2.leetcode 122.买卖股票的最佳时机II

题目链接

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len=prices.size();
        vector<vector<int>> dp(len,vector<int>(2));
        dp[0][0]-=prices[0];
        dp[0][1]=0;
        for(int i=1;i<len;i++){
            dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i]);// 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]);
        }
        return dp[len-1][1];
    }
};

思路总结:动态规划五部曲。

在动规五部曲中,这个区别主要是体现在递推公式上,其他的都和上一题是一样的。

所以我们重点讲一讲递推公式。

这里重申一下dp数组的含义:

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

注意这里和上一题唯一不同的地方,就是推导dp【i】【0】的时候,第i天买入股票的情况。、

在上一题中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

注意这里和上一题就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!

这正是因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。

想到到这一点,对这两道题理解的就比较深刻了。

3.leetcode 123.买卖股票的最佳时机III

题目链接

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if(prices.size()==0) return 0;
        vector<vector<int>> dp(prices.size(),vector<int>(5,0));
        dp[0][1]-=prices[0];
        dp[0][3]-=prices[0];
        for(int i=1;i<prices.size();i++){
            dp[i][0]=dp[i-1][0];
            dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);
            dp[i][2]=max(dp[i-1][2],dp[i-1][1]+prices[i]);
            dp[i][3]=max(dp[i-1][3],dp[i-1][2]-prices[i]);
            dp[i][4]=max(dp[i-1][4],dp[i-1][3]+prices[i]);
        }
        return dp[prices.size()-1][4];
    }
};

思路总结:这道题在力扣里面是算偏难的,所以如果是初学者的话可以跳过。

动态规划五部曲。

这道题目关键在于至多可以买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

第一,确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

第二,确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

第三,dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

第四,确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

第五,举例推导dp数组

这道题感觉还是挺难的!!!也是花了很长时间才搞懂一点点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值