问题概述
该问题要求我们确定给定序列中最短的无序子序列。序列被定义为无序的当且仅当它既不是非递减的也不是非递增的。解决该问题的目标是高效地找到这样的子序列,或者确定整个序列是有序的。
定义
- 有序序列: 满足以下条件之一的序列:
- 非递减 (例如 [1,2,2,3][1, 2, 2, 3])
- 非递增 (例如 [4,3,3,1][4, 3, 3, 1])
- 无序序列: 不满足上述条件的序列。例如,[3,1,3][3, 1, 3] 是无序的。
问题目标
给定一个包含 nn 个整数的序列 (1≤n≤1051 \leq n \leq 10^5),需要:
- 如果序列是完全有序的,输出 00。
- 否则,找出最短的无序子序列,并输出其长度 kk 和索引。
输入格式
- 第一行包含整数 nn,表示序列长度。
- 第二行包含 nn 个整数,表示序列内容。
输出格式
- 如果序列是有序的,输出 00。
- 否则,输出 k=3k = 3 和最短无序子序列的索引。
算法与解决方法
为了在给定约束下高效地解决问题,我们需要利用以下观察:
观察
- 最短的无序子序列长度为 3。对于任何序列 aa,如果存在三个连续元素 a[i],a[i+1],a[i+2]a[i], a[i+1], a[i+2],满足:
- a[i]<a[i+1]>a[i+2]a[i] < a[i+1] > a[i+2],或
- a[i]>a[i+1]<a[i+2]a[i] > a[i+1] < a[i+2], 则子序列 [a[i],a[i+1],a[i+2]][a[i], a[i+1], a[i+2]] 是无序的。
- 如果序列中不存在这样的三元组,则序列是有序的,输出 00。
解决步骤
- 边界情况:如果 n<3n < 3,序列不可能无序,直接输出 00。
- 遍历序列并检查连续的三元组:
- 对每个三元组 [a[i],a[i+1],a[i+2]][a[i], a[i+1], a[i+2]],检查是否满足条件 a[i]<a[i+1]>a[i+2]a[i] < a[i+1] > a[i+2] 或 a[i]>a[i+1]<a[i+2]a[i] > a[i+1] < a[i+2]。
- 如果找到符合条件的三元组,输出 k=3k = 3 和对应的索引 [i+1,i+2,i+3][i+1, i+2, i+3]。
- 如果遍历完成后未找到无序三元组,则序列是有序的,输出 00。
时间复杂度
- 遍历序列仅需一次,时间复杂度为 O(n)O(n)。
- 空间复杂度为 O(1)O(1),无需额外存储。
实现
以下是算法的 Python 实现:
def find_unordered_subsequence(n, sequence):
# 边界情况:如果序列长度小于 3
if n < 3:
return 0
# 遍历序列以查找无序三元组
for i in range(n - 2):
if (sequence[i] < sequence[i + 1] > sequence[i + 2]) or (sequence[i] > sequence[i + 1] < sequence[i + 2]):
# 找到了无序子序列
return f"3\n{i + 1} {i + 2} {i + 3}"
# 如果未找到无序三元组,则序列有序
return "0"
# 示例用法:
n = 5
sequence = [67, 499, 600, 42, 23]
print(find_unordered_subsequence(n, sequence))
示例与分析
示例 1
输入:
5
67 499 600 42 23
输出:
3
1 3 5
解释:三元组 [67,499,600][67, 499, 600] 是无序的 (67<499>60067 < 499 > 600)。
示例 2
输入:
3
1 2 3
输出:
0
解释:序列是完全有序的(非递减)。
示例 3
输入:
3
2 3 1
输出:
3
1 2 3
解释:序列 [2,3,1][2, 3, 1] 是无序的 (2<3>12 < 3 > 1)。
复杂度分析
- 时间复杂度: O(n)O(n),仅需一次遍历。
- 空间复杂度: O(1)O(1),仅使用常量空间。
结论
该解决方案高效地判断了无序子序列的存在性,并在适用时输出了最短的无序子序列。这一问题是利用对最小无序结构(三元组)的观察来优化计算复杂度的经典例子。