关于“无序子序列”问题的分析与解决方案

问题概述

该问题要求我们确定给定序列中最短的无序子序列。序列被定义为无序的当且仅当它既不是非递减的也不是非递增的。解决该问题的目标是高效地找到这样的子序列,或者确定整个序列是有序的。

定义

  1. 有序序列: 满足以下条件之一的序列:
    • 非递减 (例如 [1,2,2,3][1, 2, 2, 3])
    • 非递增 (例如 [4,3,3,1][4, 3, 3, 1])
  2. 无序序列: 不满足上述条件的序列。例如,[3,1,3][3, 1, 3] 是无序的。

问题目标

给定一个包含 nn 个整数的序列 (1≤n≤1051 \leq n \leq 10^5),需要:

  1. 如果序列是完全有序的,输出 00。
  2. 否则,找出最短的无序子序列,并输出其长度 kk 和索引。

输入格式

  1. 第一行包含整数 nn,表示序列长度。
  2. 第二行包含 nn 个整数,表示序列内容。

输出格式

  1. 如果序列是有序的,输出 00。
  2. 否则,输出 k=3k = 3 和最短无序子序列的索引。

算法与解决方法

为了在给定约束下高效地解决问题,我们需要利用以下观察:

观察

  1. 最短的无序子序列长度为 3。对于任何序列 aa,如果存在三个连续元素 a[i],a[i+1],a[i+2]a[i], a[i+1], a[i+2],满足:
    • a[i]<a[i+1]>a[i+2]a[i] < a[i+1] > a[i+2],或
    • a[i]>a[i+1]<a[i+2]a[i] > a[i+1] < a[i+2], 则子序列 [a[i],a[i+1],a[i+2]][a[i], a[i+1], a[i+2]] 是无序的。
  2. 如果序列中不存在这样的三元组,则序列是有序的,输出 00。

解决步骤

  1. 边界情况:如果 n<3n < 3,序列不可能无序,直接输出 00。
  2. 遍历序列并检查连续的三元组:
    • 对每个三元组 [a[i],a[i+1],a[i+2]][a[i], a[i+1], a[i+2]],检查是否满足条件 a[i]<a[i+1]>a[i+2]a[i] < a[i+1] > a[i+2] 或 a[i]>a[i+1]<a[i+2]a[i] > a[i+1] < a[i+2]。
    • 如果找到符合条件的三元组,输出 k=3k = 3 和对应的索引 [i+1,i+2,i+3][i+1, i+2, i+3]。
  3. 如果遍历完成后未找到无序三元组,则序列是有序的,输出 00。

时间复杂度

  1. 遍历序列仅需一次,时间复杂度为 O(n)O(n)。
  2. 空间复杂度为 O(1)O(1),无需额外存储。

实现

以下是算法的 Python 实现:

def find_unordered_subsequence(n, sequence):
    # 边界情况:如果序列长度小于 3
    if n < 3:
        return 0

    # 遍历序列以查找无序三元组
    for i in range(n - 2):
        if (sequence[i] < sequence[i + 1] > sequence[i + 2]) or (sequence[i] > sequence[i + 1] < sequence[i + 2]):
            # 找到了无序子序列
            return f"3\n{i + 1} {i + 2} {i + 3}"
    
    # 如果未找到无序三元组,则序列有序
    return "0"

# 示例用法:
n = 5
sequence = [67, 499, 600, 42, 23]
print(find_unordered_subsequence(n, sequence))

示例与分析

示例 1

输入

5
67 499 600 42 23

输出

3
1 3 5

解释:三元组 [67,499,600][67, 499, 600] 是无序的 (67<499>60067 < 499 > 600)。

示例 2

输入

3
1 2 3

输出

0

解释:序列是完全有序的(非递减)。

示例 3

输入

3
2 3 1

输出

3
1 2 3

解释:序列 [2,3,1][2, 3, 1] 是无序的 (2<3>12 < 3 > 1)。


复杂度分析

  1. 时间复杂度: O(n)O(n),仅需一次遍历。
  2. 空间复杂度: O(1)O(1),仅使用常量空间。

结论

该解决方案高效地判断了无序子序列的存在性,并在适用时输出了最短的无序子序列。这一问题是利用对最小无序结构(三元组)的观察来优化计算复杂度的经典例子。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值