问题概述
该问题要求找到具有恰好 nn 个约数的最小正整数。约束条件保证 n≤1000n \leq 1000,且结果不会超过 101810^{18}。这是一个经典的数论问题,核心在于数字的质因数分解与其约数个数之间的关系。
核心概念
约数个数公式
对于一个正整数 xx,如果它的质因数分解为:
x=p1e1⋅p2e2⋅…⋅pkek,x = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k},
其中 p1,p2,…,pkp_1, p_2, \ldots, p_k 是互不相同的质数,e1,e2,…,eke_1, e_2, \ldots, e_k 是它们对应的幂次,则 xx 的约数总数 d(x)d(x) 为:
d(x)=(e1+1)⋅(e2+1)⋅…⋅(ek+1)。d(x) = (e_1 + 1) \cdot (e_2 + 1) \cdot \ldots \cdot (e_k + 1)。
问题思路
- 为了找到具有恰好 nn 个约数的数,我们需要确定 e1,e2,…,eke_1, e_2, \ldots, e_k,使得它们的乘积等于 nn。
- 为了使这个数最小,应将较大的幂次分配给较小的质数。例如,使用较小的质数(如 2,3,5,…2, 3, 5, \ldots)构造的数通常比使用较大的质数构造的数要小。
挑战
- 如何高效地将 nn 分解为多个因子。
- 如何利用这些因子构造最小的数,同时保证 x≤1018x \leq 10^{18}。
算法与解决方法
解决步骤
步骤 1: 将 nn 分解为约数分量
将 nn 分解为整数 d1,d2,…,dkd_1, d_2, \ldots, d_k,这些整数分别代表约数公式中的 (e1+1),(e2+1),…,(ek+1)(e_1 + 1), (e_2 + 1), \ldots, (e_k + 1)。这保证了:
n=d1⋅d2⋅…⋅dk。n = d_1 \cdot d_2 \cdot \ldots \cdot d_k。
步骤 2: 将因子分配给质数
使用最小的质数 2,3,5,7,…2, 3, 5, 7, \ldots,并将因子 d1,d2,…,dkd_1, d_2, \ldots, d_k 转换为 ei=di−1e_i = d_i - 1 分配给对应的质数 pip_i。
步骤 3: 最小化结果
最终的结果通过以下公式计算:
x=p1e1⋅p2e2⋅…⋅pkek。x = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}。
为了最小化 xx,需要将较大的幂次分配给较小的质数。
实现细节
将 nn 因子化
为了高效地因子化 nn,可以使用回溯或动态规划的方法探索所有可能的因子组合。
构造最小数字
在确定了因子后,使用贪心算法:
- 将最大的因子分配给最小的质数。
- 使用模块化运算或标准乘法计算结果,避免溢出。
实现
以下是 Python 的实现代码:
from itertools import combinations
from math import prod
# 生成小质数列表(对于本问题,小质数即可)
def generate_primes(limit):
primes = []
sieve = [True] * (limit + 1)
for p in range(2, limit + 1):
if sieve[p]:
primes.append(p)
for multiple in range(p * p, limit + 1, p):
sieve[multiple] = False
return primes
# 回溯寻找具有 n 个约数的最小数
def find_smallest_with_divisors(n):
primes = generate_primes(1000)
def backtrack(remaining, prime_index, current_product):
if remaining == 1:
return current_product
best = float('inf')
for exp in range(1, 64): # 限制指数防止溢出
if remaining % (exp + 1) == 0:
new_product = current_product * (primes[prime_index] ** exp)
if new_product > 10**18:
break
best = min(best, backtrack(remaining // (exp + 1), prime_index + 1, new_product))
return best
return backtrack(n, 0, 1)
# 输入和输出
n = int(input())
print(find_smallest_with_divisors(n))
示例分析
示例 1
输入:
n=4n = 4
输出:
66
解释:
- 将 n=4n = 4 分解为 2×22 \times 2。
- 使用质数 2,32, 3,对应幂次 e1=1,e2=1e_1 = 1, e_2 = 1。
- 最小数为 21⋅31=62^1 \cdot 3^1 = 6。
示例 2
输入:
n=6n = 6
输出:
1212
解释:
- 将 n=6n = 6 分解为 2×32 \times 3。
- 使用质数 2,32, 3,对应幂次 e1=1,e2=2e_1 = 1, e_2 = 2。
- 最小数为 21⋅32=122^1 \cdot 3^2 = 12。
复杂度分析
时间复杂度
- 质数生成:O(1000)O(\sqrt{1000})。
- 回溯:O(km)O(k^m),其中 kk 为最大因子,mm 为质数个数。
空间复杂度
- 空间复杂度为 O(k)O(k),用于存储因子组合。
结论
该问题结合了数论与优化技术。通过合理利用质因数分解与约数公式,可以高效地构造出满足约束条件的最小数。贪心地将幂次分配给较小的质数,进一步体现了数学观察在算法设计中的力量。