需要资料的宝子们可以+企鹅获取呢
点击链接加入群聊【数模比赛交流群(美赛)】https://qm.qq.com/q/LnjAfATu4C
1.surf函数绘制三维曲面图的代码和图片
在 MATLAB 中,surf 函数用于绘制三维曲面图。以下是一个简单的示例代码,展示如何使用 surf 函数来绘制一个三维曲面图,
代码解释
- 定义 x 和 y 的范围:使用 meshgrid 函数生成一个二维网格。
- 定义 z 的值:这里我们简单地使用 z=x2+y2。
- 绘制三维曲面图:使用 surf 函数绘制曲面图。
- 添加标题和标签:为图形添加标题和轴标签。
- 添加颜色条:使用 colorbar 函数添加颜色条,显示高度的颜色编码。
- 设置视角:使用 view 函数设置视角,使得图形更具立体感。
对应的内容
- 图形:一个三维曲面图,其中 x 和 y 轴范围从 -5 到 5,步长为 0.1。
- 颜色:曲面颜色根据高度 z 变化,通常从蓝色(低值)到红色(高值)。
- 视角:图形以 45 度角和 30 度仰角显示,使曲面更具立体感。
- 颜色条:右侧有一个颜色条,显示颜色与高度 z 的对应关系。
2.imagesc函数绘制热图的代码和图片
在 MATLAB 中,imagesc 函数用于绘制热图(也称为矩阵图或伪彩色图),它显示数据矩阵中每个元素的值,并根据这些值应用颜色映射。以下是一个简单的示例代码,展示如何使用 imagesc 函数来绘制一个热图。
% 创建一个示例数据矩阵
data = rand(10, 10); % 生成一个 10x10 的随机数据矩阵,值在 0 到 1 之间
% 使用 imagesc 函数绘制热图
figure;
imagesc(data);
% 添加颜色条
colorbar;
% 设置颜色映射(可选)
colormap(jet); % 使用 jet 颜色映射,这是 MATLAB 的默认设置之一
% 添加标题和标签(可选)
title('热图示例');
xlabel('X 轴');
ylabel('Y 轴');
% 调整轴的比例(可选)
axis equal; % 使 X 轴和 Y 轴的比例相等,这样每个像素方块都是正方形
axis tight; % 自动调整轴限制,以紧密地围绕数据
% 如果需要,可以反转 Y 轴,使矩阵的第一行位于顶部(MATLAB 的图像坐标系统默认是图像的原点在左上角,但矩阵的索引是从第一行第一列开始的)
set(gca, 'YDir', 'normal');
代码解释
- 创建数据矩阵:data = rand(10, 10); 生成一个 10x10 的随机数据矩阵。
- 绘制热图:imagesc(data); 使用 imagesc 函数绘制热图。
- 添加颜色条:colorbar; 在图形旁边添加颜色条,显示颜色与数据值的对应关系。
- 设置颜色映射:colormap(jet); 使用 jet 颜色映射。虽然这是默认设置,但你可以根据需要更改为其他颜色映射,如 hot、cool、parula 等。
- 添加标题和标签:为图形添加标题和轴标签。
- 调整轴的比例:axis equal; 和 axis tight; 分别用于使轴比例相等和紧密围绕数据。
- 反转 Y 轴:set(gca, 'YDir', 'normal'); 反转 Y 轴的方向,使得矩阵的第一行位于热图的顶部(这与 MATLAB 的图像坐标系统默认行为相反,但与矩阵索引行为一致)。
生成的图片示例描述
- 图形:一个 10x10 的热图,其中每个小方块代表数据矩阵中的一个元素。
- 颜色:方块的颜色根据数据值变化,通常从蓝色(低值)到红色(高值),具体取决于所使用的颜色映射。
- 颜色条:右侧有一个颜色条,显示颜色与数据值的对应关系。
- 标题和标签:图形上方有标题,X 轴和 Y 轴有标签。
- 轴比例:X 轴和 Y 轴的比例相等,每个方块都是正方形。
- Y 轴方向:Y 轴的方向被反转(如果使用了 set(gca, 'YDir', 'normal');),使得矩阵的第一行位于热图的顶部。
3. contourf函数:绘制填充等高线图代码和图片
在 MATLAB 中,contourf 函数用于绘制填充等高线图(filled contour plot),它根据数据矩阵的值用不同颜色填充区域,从而显示数据的等高线区域。以下是一个使用 contourf 函数绘制填充等高线图的示例代码。
代码解释
- 创建数据矩阵:使用 meshgrid 生成 X 和 Y 的网格,然后使用 peaks 函数生成对应的 Z 值。peaks 函数生成一个常用于演示的三维曲面数据。
- 绘制填充等高线图:contourf(X, Y, Z, 20); 使用 contourf 函数绘制填充等高线图,其中 20 表示等高线的级别数。
- 添加颜色条:colorbar; 在图形旁边添加颜色条。
- 设置颜色映射:colormap(jet); 使用 jet 颜色映射。你可以根据需要更改为其他颜色映射。
- 添加标题和标签:为图形添加标题和轴标签。
- 显示等高线(可选):使用 contour 函数在填充等高线图上方添加黑色等高线。这通常用于更清晰地显示等高线的位置。hold on 和 hold off 命令用于在同一图形上叠加多个绘图命令。
生成的图片示例描述:
- 图形:一个填充等高线图,其中不同颜色区域表示不同的 Z 值范围。
- 颜色:区域的颜色根据 Z 值变化,通常从蓝色(低值)到红色(高值),具体取决于所使用的颜色映射。
- 颜色条:右侧有一个颜色条,显示颜色与 Z 值的对应关系。
- 等高线(如果添加了):在填充区域上方有黑色等高线,显示具体的等高线位置。
- 标题和标签:图形上方有标题,X 轴和 Y 轴有标签。
4.waterfall函数:绘制瀑布图代码和图片
在 MATLAB 中,waterfall 函数用于绘制瀑布图(也称为三维瀑布图或流动图),它显示数据在三维空间中的变化,其中 X、Y 和 Z 轴分别代表两个独立变量和一个因变量。瀑布图通常用于可视化数据如何随两个变量变化而变化,特别是在需要强调数据流动或变化趋势时。以下是一个使用 waterfall 函数绘制瀑布图的示例代码。
代码解释
- 定义 X 和 Y 的范围:使用 meshgrid 函数生成 X 和 Y 的网格。
- 定义 Z 的值:这里使用一个简单的函数 Z = sin(sqrt(X.^2 + Y.^2)) 来计算 Z 的值。这个函数表示一个以原点为中心、半径变化的正弦波。
- 绘制瀑布图:waterfall(X, Y, Z); 使用 waterfall 函数绘制瀑布图。
- 添加标题和标签:为图形添加标题和轴标签。
- 设置视角:使用 view 函数设置视角,以便更好地查看三维图形。view(3) 是一个常见的三维视角设置。
- 颜色映射(可选):对于瀑布图,颜色通常用于表示 Z 轴的高度。waterfall 函数默认会根据 Z 值应用颜色映射。如果你想要自定义颜色映射,可以使用 colormap 函数。但在大多数情况下,默认颜色映射已经足够清晰。
生成的图片示例描述
- 图形:一个三维瀑布图,显示数据如何随 X 和 Y 变化而变化。
- 颜色:瀑布图的颜色根据 Z 值变化,从低值到高值通常会有颜色渐变。
- 线条:从每个 (X, Y) 点到下一个 (X+1, Y) 和 (X, Y+1) 点绘制线条,形成瀑布效果。
- 标题和标签:图形上方有标题,X 轴、Y 轴和 Z 轴有标签。
- 视角:图形以三维视角显示,使你可以看到数据的流动或变化趋势。
5.stem3函数:绘制三维离散信号图代码和图片
在 MATLAB 中,stem3 函数用于绘制三维离散信号图,它显示数据点在三维空间中的位置,通常用于可视化离散时间序列或空间分布的数据。每个数据点由一个在 Z 轴方向上的垂直线段和一个标记符号(通常是圆圈)组成,X 和 Y 轴表示数据的索引或位置,Z 轴表示数据的值。
以下是一个使用 stem3 函数绘制三维离散信号图的示例代码。
代码解释
- 定义数据:使用 meshgrid 函数生成 X 和 Y 的网格索引,然后生成一个与网格大小相同的随机数据矩阵 Z。
- 转换数据格式:由于 stem3 函数要求 X、Y 和 Z 为列向量,因此使用 (:) 操作符将 X、Y 和 Z 转换为列向量。
- 绘制三维离散信号图:stem3(X, Y, Z, 'filled'); 使用 stem3 函数绘制三维离散信号图,其中 'filled' 选项用于填充标记符号,使其更加显眼。
- 添加标题和标签:为图形添加标题和轴标签。
- 设置视角和网格线:使用 view(3) 设置三维视角,并使用 grid on 打开网格线,以便更清楚地看到数据点的位置。
生成的图片示例描述
- 图形:一个三维离散信号图,显示数据点在三维空间中的位置。
- 线条和标记:每个数据点由一个垂直线段和一个填充的圆圈组成,线段表示 Z 轴方向上的高度,圆圈表示数据点的位置。
- 标题和标签:图形上方有标题,X 轴、Y 轴和 Z 轴有标签。
- 视角和网格线:图形以三维视角显示,并且有网格线帮助识别数据点的位置。
6.绘制日历热力图并调整大小代码和图片
在 MATLAB 中绘制日历热力图(也称为时间热力图或日历热图)通常涉及几个步骤:准备数据、创建日历布局、根据数据填充颜色,并可能调整图形的大小和样式。以下是一个示例代码,它演示了如何使用 MATLAB 绘制日历热力图,并调整图形的大小。
% 假设我们有一个包含每天数据的矩阵,行表示月份,列表示月份中的每一天
% 这里我们使用随机数据作为示例
data = randi([0, 100], 12, 31); % 12个月,每个月31天(注意:这不是一个真实的日历数据)
% 由于不是所有月份都有31天,我们需要一个掩码来处理这个问题
daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]; % 默认不考虑闰年
validData = false(12, max(daysInMonth));
for i = 1:12
validData(i, 1:daysInMonth(i)) = true;
end
% 将数据裁剪到实际天数
data = data .* validData;
% 创建一个图像对象来绘制热力图
figure;
hImagesc = imagesc(data);
% 设置颜色映射
colormap(jet); % 或使用其他颜色映射
colorbar; % 添加颜色条
% 设置 X 和 Y 轴标签
xticks(1:31);
xticklabels(arrayfun(@num2str, 1:31, 'UniformOutput', false));
yticks(1:12);
yticklabels(month(datenum(2023, 1:12, 1)), 'Rotation', 45); % 使用2023年作为参考年份获取月份名称
% 设置轴的范围和比例
xlim([1 max(daysInMonth)]);
ylim([1 12]);
axis xy; % 保持X和Y轴的比例相同(但在这个例子中可能不需要,因为我们是绘制日历)
set(gca, 'XTick', 1:7:max(daysInMonth)); % 可选:设置X轴的刻度间隔为7天
% 调整图像大小以匹配日历布局
set(hImagesc, 'CDataMapping', 'scaled'); % 确保数据被正确映射到颜色范围
imagescLimits = [min(data(:)), max(data(:))]; % 获取数据的最小值和最大值
axis image; % 保持图像的宽高比,并填充整个图形窗口
% 可选:添加标题和自定义图形属性
title('日历热力图示例');
set(gcf, 'Position', [100, 100, 800, 600]); % 调整图形窗口的位置和大小
% 由于imagesc默认填充整个图形窗口,我们不需要额外调整图像大小
% 但如果需要更精细的控制,可以考虑使用uistack、subplot或其他布局管理工具
代码解释和注意事项
- 数据准备:data 矩阵包含了我们想要可视化的数据。在这个例子中,我们使用了随机数据。在实际应用中,你需要用真实的数据替换它。
- 处理不同月份的天数:由于不是所有月份都有相同的天数,我们使用了一个掩码 validData 来处理这个问题。这个掩码确保了我们只在每个月的实际天数上绘制数据。
- 绘制热力图:使用 imagesc 函数绘制热力图。这个函数根据数据矩阵的值填充颜色。
- 设置颜色映射和颜色条:使用 colormap 函数设置颜色映射,并使用 colorbar 函数添加颜色条。
- 设置轴标签:为 X 轴和 Y 轴设置标签。X 轴标签表示天数,Y 轴标签表示月份。
- 调整图像大小:在这个例子中,imagesc 默认填充整个图形窗口,所以我们不需要额外调整图像大小。但是,我们使用 set(gcf, 'Position', ...) 调整了图形窗口的位置和大小。如果需要更精细的控制,可以考虑使用其他布局管理工具。
- 注意事项:这个示例代码有几个简化和假设的地方。例如,它没有考虑闰年,也没有处理每个月实际天数的变化。在实际应用中,你可能需要根据具体需求调整代码。
生成的图片示例描述
- 图形:一个日历热力图,显示每个月中每天的数据值。
- 颜色:热力图的颜色根据数据值变化,从低值到高值通常会有颜色渐变。
- 标题和标签:图形上方有标题,X 轴表示天数,Y 轴表示月份,并有相应的标签。
- 颜色条:右侧有一个颜色条,显示颜色与数据值的对应关系。
- 图形大小:图形窗口的大小和位置已经根据代码中的设置进行了调整。