如何使用Matlab程序 -GUI的肌电信号处理

如何使用Matlab程序 -GUI的肌电信号处理,设有用户登录界面、信号处理界面,特征计算界面。对给定动作的表面肌电信号进行滤波预处理,时域分析、频谱分析和熵值分析,比较疲劳前后各特征变化,分析肌肉不同工作状态下的特点。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在 MATLAB 中使用 GUI(图形用户界面)处理肌电信号(EMG 信号)是一个非常实用的方法。以下是一个简单的示例,展示如何创建一个 GUI 来加载、预处理和分析 EMG 信号。


步骤概述

  1. 加载 EMG 数据:从文件中读取数据。
  2. 信号预处理:包括滤波、去噪等操作。
  3. 信号分析:计算时域特征(如 RMS、MAV 等)或频域特征。
  4. 显示结果:通过图形界面展示原始信号和处理后的信号。

代码实现

以下是一个完整的 MATLAB GUI 示例代码:

function emg_gui
    % 创建 GUI 主窗口
    fig = uifigure('Name', 'EMG Signal Processing', 'Position', [100, 100, 800, 600]);

    % 添加按钮:加载数据
    btnLoad = uibutton(fig, 'push', 'Text', 'Load EMG Data', ...
        'Position', [50, 500, 150, 30], 'ButtonPushedFcn', @(btn, event) loadEMGData());

    % 添加按钮:滤波
    btnFilter = uibutton(fig, 'push', 'Text', 'Filter Signal', ...
        'Position', [250, 500, 150, 30], 'ButtonPushedFcn', @(btn, event) filterSignal());

    % 添加按钮:分析
    btnAnalyze = uibutton(fig, 'push', 'Text', 'Analyze Signal', ...
        'Position', [450, 500, 150, 30], 'ButtonPushedFcn', @(btn, event) analyzeSignal());

    % 添加绘图区域
    ax = uiaxes(fig, 'Position', [50, 50, 700, 400]);

    % 全局变量存储数据和图形句柄
    data = struct('raw', [], 'filtered', [], 'analyzed', []);
    handles = struct('ax', ax);

    % 定义加载数据的回调函数
    function loadEMGData()
        % 打开文件选择对话框
        [file, path] = uigetfile({'*.mat', 'MAT Files (*.mat)'; '*.csv', 'CSV Files (*.csv)'}, 'Select EMG Data File');
        if isequal(file, 0)
            return; % 用户取消选择
        end

        % 加载数据
        filePath = fullfile(path, file);
        if contains(file, '.mat')
            loadedData = load(filePath);
            data.raw = loadedData.signal; % 假设 MAT 文件中信号存储在变量 signal 中
        elseif contains(file, '.csv')
            data.raw = csvread(filePath); % 如果是 CSV 文件
        end

        % 绘制原始信号
        plot(handles.ax, data.raw, 'b', 'DisplayName', 'Raw Signal');
        title(handles.ax, 'Raw EMG Signal');
        xlabel(handles.ax, 'Samples');
        ylabel(handles.ax, 'Amplitude');
        legend(handles.ax, 'show');
    end

    % 定义滤波信号的回调函数
    function filterSignal()
        if isempty(data.raw)
            uialert(fig, 'Please load EMG data first!', 'Error');
            return;
        end

        % 设计带通滤波器 (20-500 Hz)
        fs = 1000; % 假设采样频率为 1000 Hz
        lowCutoff = 20 / (fs / 2);
        highCutoff = 500 / (fs / 2);
        [b, a] = butter(4, [lowCutoff, highCutoff], 'bandpass');

        % 应用滤波器
        data.filtered = filtfilt(b, a, data.raw);

        % 绘制滤波后的信号
        hold(handles.ax, 'on');
        plot(handles.ax, data.filtered, 'r', 'DisplayName', 'Filtered Signal');
        title(handles.ax, 'Raw and Filtered EMG Signals');
        legend(handles.ax, 'show');
        hold(handles.ax, 'off');
    end

    % 定义分析信号的回调函数
    function analyzeSignal()
        if isempty(data.filtered)
            uialert(fig, 'Please filter the signal first!', 'Error');
            return;
        end

        % 计算 RMS(均方根值)
        rmsValue = sqrt(mean(data.filtered.^2));

        % 显示分析结果
        uialert(fig, sprintf('RMS Value: %.4f', rmsValue), 'Analysis Result');
    end
end

代码说明

  1. GUI 创建

    • 使用 uifigure 创建主窗口。
    • 添加按钮用于加载数据、滤波和分析信号。
    • 使用 uiaxes 创建绘图区域。
  2. 加载数据

    • 支持 .mat.csv 格式的数据文件。
    • 假设 .mat 文件中信号存储在变量 signal 中。
  3. 信号滤波

    • 使用 butter 函数设计一个四阶带通滤波器。
    • 使用 filtfilt 实现零相位滤波。
  4. 信号分析

    • 计算信号的均方根值(RMS),作为时域特征之一。
    • 使用 uialert 显示分析结果。
  5. 绘图

    • 原始信号用蓝色绘制,滤波后的信号用红色绘制。

运行步骤

  1. 将上述代码保存为 emg_gui.m 文件。
  2. 在 MATLAB 中运行 emg_gui
  3. 按照界面上的按钮提示操作:
    • 点击 “Load EMG Data” 加载数据。
    • 点击 “Filter Signal” 对信号进行滤波。
    • 点击 “Analyze Signal” 查看信号分析结果。

扩展功能

  • 可以添加更多分析功能,例如计算平均绝对值(MAV)、过零率(ZC)等。
  • 支持更多类型的滤波器(如高通、低通)。
  • 提供导出处理后数据的功能。

希望这个示例能帮助你快速上手 MATLAB GUI 的 EMG 信号处理!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值