测试模型
correct = 0:用于记录模型预测正确的样本数量。
total = 0:用于记录测试数据集中的总样本数量。
outputs = net(images):将图像数据输入到神经网络模型net中,得到模型的输出。
初始化-禁用梯度-遍历测试数据集-数据移动到设备-前向传播-获取预测结果-计算每个类别的正确预测数-打印每个类别的预测数
采取全局平均池化
像keras一样显示各层参数
correct = 0:用于记录模型预测正确的样本数量。
total = 0:用于记录测试数据集中的总样本数量。
outputs = net(images):将图像数据输入到神经网络模型net中,得到模型的输出。
初始化-禁用梯度-遍历测试数据集-数据移动到设备-前向传播-获取预测结果-计算每个类别的正确预测数-打印每个类别的预测数