在咱们 CV 界,传统卷积是不是已经被 Transformer 按在地上摩擦,彻底凉凉啦?今天咱就好好唠唠这事儿!
咱先看传统卷积神经网络,也就是 CNN。这玩意儿在 CV 领域那可是老大哥,这么多年来,靠着局部感受野和权值共享这俩大杀器,在图像分类、目标检测、语义分割等任务上,那战绩相当漂亮。就像 AlexNet,当年在 ImageNet 大赛上一骑绝尘,直接把深度学习在 CV 领域的火给点起来了。它通过多个卷积层和池化层,能把图像里的局部特征,像纹理、边缘这些,提取得明明白白,而且计算量相对可控,在资源有限的情况下也能跑得欢。
再瞅瞅 Transformer,这货原本是在自然语言处理领域大放异彩的,后来跨界到 CV 界,也是搅得风生水起。它靠的是自注意力机制,能一下子抓住图像全局的依赖关系。比如说 Vision Transformer(ViT),把图像切成一个个小块,当成序列来处理,在大规模数据集上训练后,性能直接起飞,在一些图像任务上,把传统 CNN 都给比下去了。就好比处理一张复杂场景的图片,CNN 可能得一层一层慢慢堆叠卷积层,才能大概掌握全局信息,可 ViT 用自注意力机制,一下子就能把整个图像的信息都关联起来分析,效率和效果都杠杠的。
但你要说传统卷积就彻底不行了,那可太草率!咱得看实际应用场景和条件。从数据集角度来说,如果数据量不大,CNN 那收敛速度和效果,比 Transformer 强多了。因为 CNN 本身就有一些符合图像数据特性的归纳偏置,数据少的时候也能学得有模有样。谷歌 DeepMind 团队研究发现,在相同计算量下,纯卷积网络的 NFNet 系列模型,在 ImageNet 上的表现,像 NFNet - F7+,比 ViT - G/14 这些都好。这说明啥?在特定条件下,卷积网络依旧能打!
而且从计算资源角度看,Transformer 那参数量和计算量,啧啧啧,简直就是个 “电老虎”。图片稍微大一点,它处理起来就费劲,还得各种优化改进,像 Swin Transformer 引入移动窗口机制,就是为了降低计算量。可即便这样,还是比 CNN 消耗资源。在工业界实际应用里,很多时候得考虑成本,推理时间长、训练时间长、调试还麻烦,这都是 Transformer 的痛点。相反,卷积运算经过这么多年优化,效率杠杠的,对硬件也更友好,大部分推理芯片都能轻松跑 CNN。
其实啊,CNN 和 Transformer 并不是你死我活的关系。现在不少研究和实践都在探索把两者结合起来。卷积擅长提取局部细节,Transformer 擅长把握全局信息,把它们的优势整合一下,那效果简直无敌。比如说先用 CNN 把图像的基础局部特征提取出来,降低数据量,再交给 Transformer 去处理全局关系,进行更高级的抽象分析。这就像两个人组队打怪,一个负责近战输出,一个负责远程支援,配合得好,啥任务都能拿下。
所以,在 CV 界,传统卷积可没彻底输给 Transformer。它们各有各的地盘,在不同场景下发挥着重要作用