要结合机器学习/深度学习做科研,从入门到写论文最快需要多久啊??

这是我在知乎上看到的一个问题,应该是说出了许多需要用机器学习深度学习来做课题研究生的心声,为了发论文和毕业可真是太难了!

 其实从入门DL到开始写论文,只要几个月就够了:

 第一步:学习深度学习,没基础的看吴恩达老师的机器学习课程/有基础的可以看李沐老师的动手学深度学习,跟着教程敲(代码)下来,能让你对深度学习有一个基本的认识。 期间可以适当看一些经典、前沿的论文、综述,顺便看看AI相关书籍来补充理论,时间大概在一个半月左右(文末会给大家分享相关的综述、书籍资料)。

 

 第二步:找你到的研究方向,这一步要做的就是不断积累这个方向的代码经验。Paper with code、arxiv、Github上都能找到许多开源代码,如果你嫌一篇篇找太麻烦,也可以在这份人工智能论文与代码仓库(AI热门方向几乎都涵盖在内)里找到自己的研究方向,当中98%的论文都是包含实现代码的,你可以选择性下载自己需要的论文和代码(文末有分享)。

 

 第三步:理解论文代码,当你有了论文和代码之后,就是不断重复配置环境、跑代码、修改数据集/网络等等这个过程,同时在读代码的过程中也要精读对应的论文,了解其输入、输出是什么,这样才能高效提升对论文的理解能力。

 

 第四步:尝试创新,完成了前三步之后你就可以逐渐搭建自己的训练框架,也能搞懂这个领域大多数人是怎么做研究的了,这时就可以不断尝试新方法。

 一般使用的思路主要有两种:

(1)在自己任务的Baseline上加模块,目的就是为了涨点;

(2)把其他领域的方法借鉴过来解决一个特定的问题。

这两种思路各有优缺点:

前者思路明确,就是不断挑好的方法模块去试,但也正因为这样有时候挺难达到SOTA(当然,SOTA不是发论文的必要条件!);

后者做的人可能比较少、竞争小,但没有明确的思路甚至连要解决什么问题都不明确,需要自己去探索。

两种方法都是可以的,具体怎么选择可以结合实验室基础和自身条件去判断。

 

 第五步:开始写论文,在你确定了要解决的问题并且寻找到了一个解决办法之后,剩下的就是不断跑实验,积累数据。包括基本数据、对比数据、自身方法数据,跑出来一个基本的效果之后,感觉自己心里有底了,就可以开始写论文了

路线中提到的综述、论文与代码、书籍PDF,可以添加我的小助手无偿分享给你~

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值