
深度学习
文章平均质量分 59
深度学习入门
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
要学深度学习,最重要的是先对其建立一个系统宏观的架构!
对于学习和研究深度学习的小伙伴而言,及早建立一个系统宏观的深度学习架构是非常重要的!因为这对你快速确定研究方向、针对性的补充知识以及寻找论文idea都非常非常有帮助。原创 2025-05-17 13:51:59 · 130 阅读 · 0 评论 -
要结合机器学习/深度学习做科研,从入门到写论文最快需要多久啊??
这是我在知乎上看到的一个问题,应该是说出了许多需要用机器学习深度学习来做课题研究生的心声,为了发论文和毕业可真是太难了!原创 2025-05-16 17:10:33 · 470 阅读 · 0 评论 -
都说调参是玄学?但它其实可以很科学!!!
打个比方:就像做饭的时候调整盐、糖的比例,调参是为了让模型表现得更好,调节不同的参数以适应特定任务。在学习深度学习的时候,调参是一个非常重要的环节,但调参能力是需要日积月累提升的,这就需要我们对为什么调参、怎么进行调参、怎么让调参结果最优化进行具体的学习等问题有一个完整且科学的优化模型流程,这才是我们进行调参的最终目的。比如在选择优化器时,由于所有类型的机器学习问题和模型架构中都不存在最好的那一个,那么我们就坚持选择时下最流行、最成熟的那一个(尤其对于新项目来说)。• 最好的学习率衰减方案是什么?原创 2025-05-16 16:38:35 · 229 阅读 · 0 评论 -
毕设党福音!OpenCV 实战:掌握视觉处理技巧
在当下,AI 大模型的热潮可谓席卷全球,从能与我们流畅对话、撰写文案的语言模型,到能根据只言片语创作出精美画作的图像生成模型,它们不断刷新着大众对人工智能的认知,也切实改变着众多行业的运作模式。事实并非如此,计算机视觉技术正凭借自身的独特优势不断创新,展现出强大的生命力与发展潜力。今天我将以下几个方面来带领大家快速了解计算机视觉这个领域。目录一、计算机视觉:开启智能视觉大门二、核心概念:搭建视觉认知基石三、传统技术:早期探索的智慧结晶四、应用变迁:不同时期的亮眼表现。原创 2025-05-16 11:56:51 · 646 阅读 · 0 评论 -
为何Transformer独领风骚?一文解析大模型时代的幕后英雄!
当GPT以流畅丝滑的对话交互惊艳大众时,人们的目光被其吸引。而在这背后,Transformer架构无疑是支撑起这场语言革命的关键力量。想要深入理解如今火爆的大语言模型,就必须揭开Transformer的神秘面纱。为了更好助力大家进入这场语言革命的大门,在这里强力向大家推荐这本书,里面讲详细讲解了“为什么要这样做”以及“怎么亲手实现”。这本书配套的代码全部开源(GitHub 40.6k Star),下方链接可直达,。扫码加助理即可领取完整资料。原创 2025-05-16 11:45:12 · 874 阅读 · 0 评论 -
真不愧是麻省理工出版的“深度学习启蒙圣经”!!!
于是他从深度学习的基本概念开始讲解,梳理了深度学习的三大技术演进阶段:基础架构层(自动编码器与循环神经网络)、时序建模层(长短期记忆网络优化方案),以及创新范式层(生成式对抗网络、胶囊网络等新型架构),完整呈现了从特征提取到创造性生成的算法进化路径。这本书的作者也不是什么无名之辈,John D. Kelleher在AI领域深耕多年,对计算机视觉、自然语言处理这些方向都有极深的研究,这本书也是他多年科研经验的具象体现。这本麻省理工学院出版社精心出版《深度学习》真不愧是被许多人眼中的“深度学习启蒙圣经”原创 2025-05-14 17:02:07 · 108 阅读 · 0 评论 -
强烈建议所有学习深度学习的人把它当做第一篇论文来看!!!
Yann LeCun。原创 2025-05-14 16:43:14 · 108 阅读 · 0 评论 -
依旧是25年最拔尖的PyTorch实用教程!堪比付费级内容,真心建议大家人手一份啊!
我真的想知道作者到底咋把PyTorch教程整得这么牛的啊?明明在内容上已经足以成为付费教材了,但作者偏要免费开源给大家学习!而且就连Datawhale这个国内著名的开源组织都专程写文章给大家安利,从安装环境开始,一直到模型应用都是手把手教,不管是老手还是初学者都非常非常适用!原创 2025-05-14 16:38:03 · 164 阅读 · 0 评论 -
太权威了!一口气带你看完深度学习领域引用量最高的10篇论文!!
核心突破包括:1、多阶段训练框架,通过监督学习策略网络(SL Policy Network)模拟人类专家棋谱(准确率57%),再结合强化学习策略网络(RL Policy Network)优化自博弈胜率(提升80%以上,最终训练价值网络(Value Network)预测棋局胜负概率;其核心创新包括:1、对抗训练框架,通过生成器(Generator)与判别器(Discriminator)的动态博弈,实现数据分布的逼近,数学上以极小极大博弈公式(minGmaxDV(D,G))定义训练目标;原创 2025-05-14 16:30:06 · 741 阅读 · 0 评论 -
深度学习开端|全连接神经网络
看到这里,可能很多人会疑惑,为什么要加上f(z)这个运算,这个运算的目的是为了将输出的值域压缩到(0,1),也就是所谓的归一化,因为每一级输出的值都将作为下一级的输入,只有将输入归一化了,才会避免某个输入无穷大,导致其他输入无效,变成“一家之言”,最终网络训练效果非常不好。三维图像就像一个“碗”,如图 4.6所示,它和二维空间的抛物线一样,存在极值,那我们只要将极值求出,那就保证了我们能求出最优的(w , b)也就是这个“碗底”的坐标,使Loss 最小。对,就是这么一个东西,左边输入,中间计算,右边输出。原创 2025-04-18 18:19:35 · 1098 阅读 · 0 评论