在当今数字化金融时代,股票市场数据繁杂且瞬息万变,投资者迫切需要一个能高效整合股票信息并提供专业分析预测的平台,以辅助投资决策。本毕业设计正是基于这一背景,致力于开发一款功能全面的股票价格分析与预测系统。本系统运用 Python 语言进行开发,后端依托 Django 框架,凭借其强大的 Web 开发能力,高效处理业务逻辑,实现与 MySQL 数据库的稳定交互,完成数据的存储与管理。前端基于 Vue 框架搭建,利用其组件化和响应式设计,构建出简洁直观、交互友好的用户界面。通过 Spider 数据爬取技术,从各大金融网站定时采集股票实时价格、历史数据、公司公告等信息。借助相关算法模型对历史股票价格数据深度分析,预测股价走势,并通过 Echarts 将复杂数据以可视化图表呈现。用户端具备注册登录、个人中心、股票及公告信息查看、联系客服等功能;管理员端则涵盖登录、个人中心、用户管理、股票价格信息管理、预测管理以及系统管理等功能。该系统的成功开发,不仅提升了开发者在多领域的技术能力,更重要的是为投资者打造了一个实用的股票信息分析平台,助力其更科学、理性地参与股票投资。
股票价格分析与预测系统的模块需求围绕用户和管理员展开。用户部分,注册登录确保身份安全,个人中心方便管理信息;股票信息查看需涵盖实时与历史数据、财务指标等,公告信息查看要及时推送公司动态,联系客服中心提供沟通渠道。管理员部分,登录保障操作权限,个人中心管理自身信息;用户管理负责维护用户数据,股票价格信息管理确保数据准确及时,股票价格预测管理优化模型提升精准度,系统管理保障系统稳定运行,各模块协同满足不同使用需求。系统结构功能图如图如图3-3所示。
图 3-3 系统结构功能图
证券词云展示了一系列证券名称,如福建金森、中京电子等。词云通过字体大小和颜色区分不同证券,通常字体越大越显眼,代表该证券在相关分析或市场关注中更为突出,是一种直观呈现重点证券标的方式,帮助投资者快速聚焦关注的股票名称。
图421证券词云图