【数据分析】基于大数据的手机定价数据可视化分析系统 | 大数据可视化大屏 大数据选题推荐 大数据毕设实战项目 Hadoop SPark java Python

手机定价数据可视化分析系统

【投稿赢 iPhone 17】「我的第一个开源项目」故事征集:用代码换C位出道! 10w+人浏览 638人参与

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

基于大数据的手机定价数据可视化分析系统介绍

《基于大数据的手机定价数据可视化分析系统》采用Hadoop+Spark作为核心大数据处理框架,结合Python语言和Django后端框架,配合Vue+ElementUI+Echarts前端技术栈,实现了对手机市场定价数据的深度挖掘与可视化呈现。系统通过HDFS分布式文件系统存储海量手机参数数据,利用Spark SQL进行高效的数据清洗与转换,借助Pandas和NumPy完成统计分析计算,最终将摄像头配置、硬件性能、屏幕参数、功能特性等多维度分析结果以Echarts图表形式动态展示。系统包含用户管理、手机定价数据管理、摄像头分析、功能分析、硬件分析、性能分析、价格分析、屏幕分析以及数据大屏等核心功能模块,支持管理员对手机数据进行增删改查操作,并能够从不同角度生成价格趋势图、性能对比图、配置分布图等可视化报表,为手机定价策略提供数据支撑。

基于大数据的手机定价数据可视化分析系统演示视频

【数据分析】基于大数据的手机定价数据可视化分析系统 | 大数据可视化大屏 大数据选题推荐 大数据毕设实战项目 Hadoop SPark java Python

基于大数据的手机定价数据可视化分析系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的手机定价数据可视化分析系统代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, min, max, sum, when, round
from django.http import JsonResponse
from django.views import View
import pandas as pd
import numpy as np

spark = SparkSession.builder.appName("PhonePricingAnalysis").master("local[*]").config("spark.sql.shuffle.partitions", "4").getOrCreate()

class CameraAnalysisView(View):
    def get(self, request):
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/phone_db").option("dbtable", "phone_data").option("user", "root").option("password", "123456").option("driver", "com.mysql.cj.jdbc.Driver").load()
        camera_df = df.select("id", "phone_name", "front_camera", "rear_camera", "price")
        camera_df = camera_df.withColumn("camera_score", col("front_camera") + col("rear_camera") * 2)
        camera_group = camera_df.groupBy("rear_camera").agg(avg("price").alias("avg_price"), count("id").alias("phone_count"), min("price").alias("min_price"), max("price").alias("max_price"))
        camera_group = camera_group.orderBy(col("rear_camera").desc())
        result_df = camera_group.filter(col("phone_count") >= 3)
        pandas_df = result_df.toPandas()
        pandas_df["price_range"] = pandas_df["max_price"] - pandas_df["min_price"]
        pandas_df["avg_price"] = pandas_df["avg_price"].round(2)
        high_end_count = len(pandas_df[pandas_df["avg_price"] > 4000])
        mid_range_count = len(pandas_df[(pandas_df["avg_price"] >= 2000) & (pandas_df["avg_price"] <= 4000)])
        low_end_count = len(pandas_df[pandas_df["avg_price"] < 2000])
        camera_distribution = {"high_end": high_end_count, "mid_range": mid_range_count, "low_end": low_end_count}
        return JsonResponse({"status": "success", "camera_data": pandas_df.to_dict(orient="records"), "distribution": camera_distribution})

class HardwareAnalysisView(View):
    def get(self, request):
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/phone_db").option("dbtable", "phone_data").option("user", "root").option("password", "123456").option("driver", "com.mysql.cj.jdbc.Driver").load()
        hardware_df = df.select("id", "phone_name", "processor", "ram", "storage", "price")
        hardware_df = hardware_df.withColumn("hardware_score", col("ram") * 10 + col("storage") / 10)
        processor_group = hardware_df.groupBy("processor").agg(avg("price").alias("avg_price"), avg("ram").alias("avg_ram"), avg("storage").alias("avg_storage"), count("id").alias("count"))
        processor_group = processor_group.filter(col("count") >= 2)
        processor_group = processor_group.orderBy(col("avg_price").desc())
        pandas_df = processor_group.toPandas()
        pandas_df["performance_index"] = (pandas_df["avg_ram"] * pandas_df["avg_storage"]) / pandas_df["avg_price"]
        pandas_df["performance_index"] = pandas_df["performance_index"].round(4)
        top_processors = pandas_df.nlargest(5, "performance_index")
        ram_distribution = hardware_df.groupBy("ram").agg(count("id").alias("phone_count"), avg("price").alias("avg_price")).toPandas()
        ram_distribution = ram_distribution.sort_values(by="ram", ascending=False)
        storage_distribution = hardware_df.groupBy("storage").agg(count("id").alias("phone_count"), avg("price").alias("avg_price")).toPandas()
        storage_distribution = storage_distribution.sort_values(by="storage", ascending=False)
        return JsonResponse({"status": "success", "processor_data": pandas_df.to_dict(orient="records"), "top_processors": top_processors.to_dict(orient="records"), "ram_data": ram_distribution.to_dict(orient="records"), "storage_data": storage_distribution.to_dict(orient="records")})

class PriceAnalysisView(View):
    def get(self, request):
        df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/phone_db").option("dbtable", "phone_data").option("user", "root").option("password", "123456").option("driver", "com.mysql.cj.jdbc.Driver").load()
        price_df = df.select("id", "phone_name", "price", "ram", "storage", "processor", "rear_camera", "screen_size")
        price_bins = [0, 1500, 3000, 5000, 10000]
        price_labels = ["0-1500", "1500-3000", "3000-5000", "5000+"]
        pandas_df = price_df.toPandas()
        pandas_df["price_range"] = pd.cut(pandas_df["price"], bins=price_bins, labels=price_labels, right=False)
        price_range_group = pandas_df.groupby("price_range").agg(phone_count=("id", "count"), avg_ram=("ram", "mean"), avg_storage=("storage", "mean"), avg_camera=("rear_camera", "mean"), avg_screen=("screen_size", "mean"))
        price_range_group = price_range_group.reset_index()
        price_range_group["avg_ram"] = price_range_group["avg_ram"].round(1)
        price_range_group["avg_storage"] = price_range_group["avg_storage"].round(1)
        price_range_group["avg_camera"] = price_range_group["avg_camera"].round(1)
        price_range_group["avg_screen"] = price_range_group["avg_screen"].round(2)
        correlation_matrix = pandas_df[["price", "ram", "storage", "rear_camera", "screen_size"]].corr()
        price_correlation = correlation_matrix["price"].drop("price").to_dict()
        percentile_25 = np.percentile(pandas_df["price"], 25)
        percentile_50 = np.percentile(pandas_df["price"], 50)
        percentile_75 = np.percentile(pandas_df["price"], 75)
        price_stats = {"min": float(pandas_df["price"].min()), "max": float(pandas_df["price"].max()), "mean": float(pandas_df["price"].mean()), "median": float(pandas_df["price"].median()), "percentile_25": float(percentile_25), "percentile_50": float(percentile_50), "percentile_75": float(percentile_75)}
        return JsonResponse({"status": "success", "price_range_data": price_range_group.to_dict(orient="records"), "correlation": price_correlation, "statistics": price_stats})

基于大数据的手机定价数据可视化分析系统文档展示

在这里插入图片描述

💖💖作者:计算机毕业设计杰瑞
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学校实战项目
计算机毕业设计选题推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值