力扣64:最小路径

LeetCode64最小路径和解析

【双节征文】月满华诞 · 码向未来--代码寄明月,指尖庆华诞 10w+人浏览 256人参与

题目

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:

img

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length

  • n == grid[i].length

  • 1 <= m, n <= 200

  • 0 <= grid[i][j] <= 200

思路

这是一个动态规划的问题

我们需要初始化一个db的表,以储存到每个位置的路径最小值。假设横坐标为i,纵坐标为j。

当i == 0时代表在第一行,由于只能向右和向下移动的性质,那么必定是由左方移动过来。

当j == 0时代表在第一列,由于只能向右和向下移动的性质,那么必定是由上方移动过来。

当 i 和 j 都不等于0时则既可能由上方也可能由左方移动过来,此时我们需要比较两方的路径最小值,并取较小方加上到达此处本身所需的花费:

db[i][j] = min(db[i-1][j], db[i][j-1]) + grid[i][j]  //状态转移方程

题解

func minPathSum(grid [][]int) int {
    rows := len(grid)       //横长
    cols := len(grid[0])    //纵长,均以左上角为起始点
    db := make([][]int, rows)    //初始化db的横列
    for k, _ := range grid{      //初始化db的纵列
        db[k] = make([]int, cols) 
    }
    for i := 0; i < rows; i++{
        for j := 0; j < cols; j++{    //填db表时先填横列再填纵列  
            if i == 0 && j == 0{      //起始位置
                db[0][0] = grid[0][0]
            }else if i > 0 && j == 0{      //当为纵列0时只可能由上部移动来
                db[i][j] = db[i-1][j] + grid[i][j]
            }else if i == 0 && j > 0{      //当横列为0时只可能由左部移动来
                db[i][j] = db[i][j-1] + grid[i][j]
            } else { 
                db[i][j] = min(db[i-1][j], db[i][j-1]) + grid[i][j]   //状态转移方程
            }
        }
    }
    return db[rows-1][cols-1]
}

func min(a, b int) int {
	if a < b { 
		return a
	}
	return b
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值