题目
给定一个包含非负整数的 *m* x *n*
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]] 输出:7 解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]] 输出:12
提示:
-
m == grid.length
-
n == grid[i].length
-
1 <= m, n <= 200
-
0 <= grid[i][j] <= 200
思路
这是一个动态规划的问题
我们需要初始化一个db的表,以储存到每个位置的路径最小值。假设横坐标为i,纵坐标为j。
当i == 0时代表在第一行,由于只能向右和向下移动的性质,那么必定是由左方移动过来。
当j == 0时代表在第一列,由于只能向右和向下移动的性质,那么必定是由上方移动过来。
当 i 和 j 都不等于0时则既可能由上方也可能由左方移动过来,此时我们需要比较两方的路径最小值,并取较小方加上到达此处本身所需的花费:
db[i][j] = min(db[i-1][j], db[i][j-1]) + grid[i][j] //状态转移方程
题解
func minPathSum(grid [][]int) int {
rows := len(grid) //横长
cols := len(grid[0]) //纵长,均以左上角为起始点
db := make([][]int, rows) //初始化db的横列
for k, _ := range grid{ //初始化db的纵列
db[k] = make([]int, cols)
}
for i := 0; i < rows; i++{
for j := 0; j < cols; j++{ //填db表时先填横列再填纵列
if i == 0 && j == 0{ //起始位置
db[0][0] = grid[0][0]
}else if i > 0 && j == 0{ //当为纵列0时只可能由上部移动来
db[i][j] = db[i-1][j] + grid[i][j]
}else if i == 0 && j > 0{ //当横列为0时只可能由左部移动来
db[i][j] = db[i][j-1] + grid[i][j]
} else {
db[i][j] = min(db[i-1][j], db[i][j-1]) + grid[i][j] //状态转移方程
}
}
}
return db[rows-1][cols-1]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}