P6464 [传智杯 #2 决赛] 传送门
题目描述
传智专修学院里有 nnn 栋教学楼,有 mmm 条双向通行道路连接这些教学楼,不存在重边和自环。每条道路都有一定的长度,而且所有教学楼之间都可以直接或者间接的通过道路到达。我们可以很容易的求出这些教学楼之间的最短路。
为了使交通更为顺畅,校方决定在两个教学楼里增设一对传送门。传送门可以将这对教学楼的距离直接缩短为 0。利用传送门,某些教学楼之间的最短路的距离就变短了。
由于预算有限,学校里只能安装一对传送门。但是校长希望尽可能方便学生,使任意两点之间的最短路长度的总和最小。当然啦,从 xxx 教学楼到 yyy 教学楼的长度和从 yyy 教学楼到 xxx 教学楼的长度只需要统计一次就可以了。
输入格式
输入第 1 行两个正整数 n,m(n≤100,m≤12n(n−1))n,m(n\le 100,m\le\frac{1}{2}n(n-1))n,m(n≤100,m≤21n(n−1)),代表教学楼和道路数量。
接下来 mmm 行,每行三个正整数 xi,yi,wi(0<wi≤104)x_i,y_i,w_i(0 <w_i \le 10^4)xi,yi,wi(0<wi≤104),表示在教学楼 xix_ixi 和 yiy_iyi 之间,有一条长度为 wiw_iwi 的道路。
输出格式
输出一行,在最优方案下的任意点对的最短道路之和。
输入输出样例 #1
输入 #1
4 5
1 2 3
1 3 6
2 3 4
2 4 7
3 4 2
输出 #1
14
说明/提示
样例如图。当在 1 和 4 号教学楼架设一对传送门时,1 → 2 的最短路是 3,1 → 3 的最短路是 0+2,1 → 4 的最短路是 0,2 → 3 的最短路是 4,2 → 4 的最短路是 3+0,3 → 4 的最短路是 2,最短路之和是 14,是最佳方案。
思路:
很明显这题是全源最短路,不能用SPFA和Dijkstra,数据范围很明显可以用Floyd,然后枚举传送门的位置
80分:
#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <algorithm>
#include <numeric>
typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> PII;
#define rep(i, n) for(int i = 0; i < n; i++)
#define Rep(i, len, n) for(int i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000
const int INF = std::numeric_limits<int>::max();
int n, m;
std::vector<std::vector<int>> f;
std::vector<int> dist;
inline void Floyd() {
for(int k = 1; k <= n; k++) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(f[i][k] < INF && f[k][j] < INF) {
f[i][j] = std::min(f[i][j], f[i][k] + f[k][j]);
}
}
}
}
}
inline int Sum() {
int sum = 0;
Rep(i, 1, n) Rep(j, i + 1, n + 1) sum += f[i][j];
return sum;
}
int main(void) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr), std::cout.tie(nullptr);
std::cin >> n >> m;
std::vector<std::vector<int>> arr(n + 1, std::vector<int>(n + 1, INF));
Rep(i, 1, n + 1) arr[i][i] = 0;
rep(i, m) {
int a, b, c;
std::cin >> a >> b >> c;
arr[a][b] = arr[b][a] = c;
}
f = arr;
Floyd();
int ans = Sum();
Rep(i, 1, n) {
Rep(j, i + 1, n + 1) {
f = arr;
f[i][j] = f[j][i] = 0;
Floyd();
ans = std::min(ans, Sum());
}
}
std::cout << ans << '\n';
return 0;
}
因为会TLE几个点,这么写时间复杂度是O(n5n^5n5 + n4n^4n4 + n3n^3n3) 也就是 O(n5n^5n5) 的时间复杂度,所以就想优化一下,发现每次都会跑一遍Floyd就导致时间复杂度太高,因为Floyd跑出来数据是跟中转点k有关的,所以我们每一次枚举传送门就只与两个点也就一条边有关,我就只需要改变这两个点作为中转点的边就行,这样我们的时间复杂度就从O(n5n^5n5) 降到了O(n4n^4n4)。
100分:
#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <algorithm>
#include <numeric>
typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> PII;
#define rep(i, n) for(int i = 0; i < n; i++)
#define Rep(i, len, n) for(int i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000
const int INF = std::numeric_limits<int>::max();
int n, m;
std::vector<std::vector<int>> f;
inline void Floyd() {
for(int k = 1; k <= n; k++) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(f[i][k] < INF && f[k][j] < INF) {
f[i][j] = std::min(f[i][j], f[i][k] + f[k][j]);
}
}
}
}
}
inline void Floyd(int x, int y) { // 重载Floyd
// x作为中转点
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(f[i][x] < INF && f[x][j] < INF) {
f[i][j] = std::min(f[i][j], f[i][x] + f[x][j]);
}
}
}
// y作为中转点
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(f[i][y] < INF && f[y][j] < INF) {
f[i][j] = std::min(f[i][j], f[i][y] + f[y][j]);
}
}
}
}
inline int Sum() {
int sum = 0;
Rep(i, 1, n) Rep(j, i + 1, n + 1) sum += f[i][j];
return sum;
}
int main(void) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr), std::cout.tie(nullptr);
std::cin >> n >> m;
f.resize(n + 1, std::vector<int>(n + 1, INF));
Rep(i, 1, n + 1) f[i][i] = 0;
rep(i, m) {
int a, b, c;
std::cin >> a >> b >> c;
f[a][b] = f[b][a] = c;
}
Floyd(); // 先跑一遍Floyd, 得到没加传送门的f数组(x->y的最短距离)
int ans = Sum();
Rep(i, 1, n) {
Rep(j, i + 1, n + 1) {
std::vector<std::vector<int>> backup = f; // 备份一份f
f[i][j] = f[j][i] = 0;
Floyd(i, j);
ans = std::min(ans, Sum());
f = backup;
}
}
std::cout << ans << '\n';
return 0;
}