P2047 [NOI2007] 社交网络
题目描述
在社交网络 ( Social Network ) 的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题:
在一个社交圈子里有
n
n
n 个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个
n
n
n 个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值
c
c
c ,
c
c
c 越小,表示两个人之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人
s
s
s 和
t
t
t 之间的关系密切程度,注意到最短路径上的其他结点为
s
s
s 和
t
t
t 的联系提供了某种便利,即这些结点对于
s
s
s 和
t
t
t 之间的联系有一定的重要程度。我们可以通过统计经过一个结点
v
v
v 的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点
A
A
A 和
B
B
B 之间可能会有多条最短路径。我们修改重要程度的定义如下:令
C
s
,
t
C_{s,t}
Cs,t 表示从s到t的不同的最短路的数目,
C
s
,
t
(
v
)
C_{s,t}(v)
Cs,t(v) 表示经过
v
v
v 从
s
s
s 到
t
t
t 的最短路的数目;则定义:
I ( v ) = ∑ s ≠ v , t ≠ v C s , t ( v ) C s , t I(v)=\sum_{s \ne v,t\ne v} \frac{C_{s,t}(v)}{C_{s,t}} I(v)=s=v,t=v∑Cs,tCs,t(v)
为结点 v v v 在社交网络中的重要程度。为了使 I ( v ) I(v) I(v) 和 C s , t ( v ) C_{s,t}(v) Cs,t(v) 有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。
输入格式
输入第一行有两个整数
n
n
n 和
m
m
m ,表示社交网络中结点和无向边的数目。
在无向图中,我们将所有结点从
1
1
1 到
n
n
n 进行编号。
接下来
m
m
m 行,每行用三个整数
a
,
b
,
c
a , b , c
a,b,c 描述一条连接结点
a
a
a 和
b
b
b ,权值为
c
c
c 的无向边。
注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。
输出格式
输出包括 n n n 行,每行一个实数,精确到小数点后 3 3 3 位。第 i i i 行的实数表示结点 i i i 在社交网络中的重要程度。
输入输出样例 #1
输入 #1
4 4
1 2 1
2 3 1
3 4 1
4 1 1
输出 #1
1.000
1.000
1.000
1.000
说明/提示
对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。
对于
50
%
50\%
50% 的数据,
n
≤
10
,
m
≤
45
n \le 10 , m \le 45
n≤10,m≤45。
对于
100
%
100\%
100% 的数据,
n
≤
100
,
m
≤
4500
n \le 100 , m \le 4500
n≤100,m≤4500 ,任意一条边的权值
c
c
c 是正整数且
1
⩽
c
⩽
1000
1 \leqslant c \leqslant 1000
1⩽c⩽1000 。
所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过
1
0
10
10^{10}
1010。
思路:
题目中既涉及了中间节点,也涉及了所有点的最短路,很明显是用Floyd求解。本题就是在求全源最短路的同时加上一个边数记录。
记录方式有点像P1875 佳佳的魔法药水这题。
i 通向 k 的所有路径 和 k 通向 j 的所有路径相乘(默认是1),同时计算最短路:
if(f[i][j] > f[i][k] + f[k][j]) { // 找到新的最短路了,就重新更新经过k点的路
f[i][j] = f[i][k] + f[k][j];
e[i][j] = e[i][k] * e[k][j];
}
如果到达 k 点费用相同就是 i 通向 k 的所有路径 和 k 通向 j 的所有路径相乘 累加到 从 i 到 j 的总路径上
if(f[i][j] == f[i][k] + f[k][j]) {
e[i][j] += e[i][k] * e[k][j];
}
然后就是枚举所有点,根据公式计算
I
(
v
)
I(v)
I(v)
I
(
v
)
=
∑
s
≠
v
,
t
≠
v
C
s
,
t
(
v
)
C
s
,
t
I(v)=\sum_{s \ne v,t\ne v} \frac{C_{s,t}(v)}{C_{s,t}}
I(v)=s=v,t=v∑Cs,tCs,t(v)
计算求和的时候需要判断一下这条路径是i->j的最短路,同时要保证 i ≠ j , j ≠ k , i ≠ k i \ne j,j \ne k, i \ne k i=j,j=k,i=k. 只有满足了 d i s t ( i , j ) = = d i s t ( i , k ) + d i s t ( k , j ) dist(i, j) == dist(i, k) + dist(k, j) dist(i,j)==dist(i,k)+dist(k,j)这个条件的时候才说明是最短路,才会去累加 I ( v ) I(v) I(v).记得开 l o n g l o n g longlong longlong
Rep(k, 1, n + 1) {
ld I_u = 0;
Rep(i, 1, n + 1) {
if(i == k) continue;
Rep(j, 1, n + 1) {
if(j == k || i == j) continue;
if(f[i][j] == f[i][k] + f[k][j]) I_u += ((ld)e[i][k] * e[k][j]) / e[i][j];
}
}
std::cout << std::fixed << std::setprecision(3) << I_u << '\n';
}
AC code:
#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <iomanip>
typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<ll, ll> PII;
#define rep(i, n) for(ll i = 0; i < n; i++)
#define Rep(i, len, n) for(ll i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000
const ll INF = std::numeric_limits<ll>::max();
ll n, m;
std::vector<std::vector<ll>> f;
std::vector<std::vector<ll>> e;
inline void Floyd() {
Rep(k, 1, n + 1) {
Rep(i, 1, n + 1) {
Rep(j, 1, n + 1) {
if(f[i][k] < INF && f[k][j] < INF) {
if(f[i][j] > f[i][k] + f[k][j]) { // 找到新的最短路了,就重新更新经过k点的路
f[i][j] = f[i][k] + f[k][j];
e[i][j] = e[i][k] * e[k][j];
}else if(f[i][j] == f[i][k] + f[k][j]) e[i][j] += e[i][k] * e[k][j]; // 不同的路径都是最小值,那么i->k的条数加上k->j的条数在乘上i~j的条数就是所有最短路i->j的路径数(k不一定与之前的相同)
}
}
}
}
}
int main(void) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr), std::cout.tie(nullptr);
std::cin >> n >> m;
f.resize(n + 1, std::vector<ll>(n + 1, INF));
e.resize(n + 1, std::vector<ll>(n + 1, 0));
Rep(i, 1, n + 1) f[i][i] = 0;
rep(i, m) {
ll a, b, c;
std::cin >> a >> b >> c;
f[a][b] = f[b][a] = c;
e[a][b] = e[b][a] = 1;
}
Floyd();
Rep(k, 1, n + 1) {
ld I_u = 0;
Rep(i, 1, n + 1) {
if(i == k) continue;
Rep(j, 1, n + 1) {
if(j == k || i == j) continue;
if(f[i][j] == f[i][k] + f[k][j]) I_u += ((ld)e[i][k] * e[k][j]) / e[i][j];
}
}
std::cout << std::fixed << std::setprecision(3) << I_u << '\n';
}
return 0;
}