P2047 [NOI2007] 社交网络

P2047 [NOI2007] 社交网络

题目描述

在社交网络 ( Social Network ) 的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题:
在一个社交圈子里有 n n n 个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个 n n n 个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值 c c c c c c 越小,表示两个人之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人 s s s t t t 之间的关系密切程度,注意到最短路径上的其他结点为 s s s t t t 的联系提供了某种便利,即这些结点对于 s s s t t t 之间的联系有一定的重要程度。我们可以通过统计经过一个结点 v v v 的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点 A A A B B B 之间可能会有多条最短路径。我们修改重要程度的定义如下:令 C s , t C_{s,t} Cs,t 表示从s到t的不同的最短路的数目, C s , t ( v ) C_{s,t}(v) Cs,t(v) 表示经过 v v v s s s t t t 的最短路的数目;则定义:

I ( v ) = ∑ s ≠ v , t ≠ v C s , t ( v ) C s , t I(v)=\sum_{s \ne v,t\ne v} \frac{C_{s,t}(v)}{C_{s,t}} I(v)=s=v,t=vCs,tCs,t(v)

为结点 v v v 在社交网络中的重要程度。为了使 I ( v ) I(v) I(v) C s , t ( v ) C_{s,t}(v) Cs,t(v) 有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。

输入格式

输入第一行有两个整数 n n n m m m ,表示社交网络中结点和无向边的数目。
在无向图中,我们将所有结点从 1 1 1 n n n 进行编号。

接下来 m m m 行,每行用三个整数 a , b , c a , b , c a,b,c 描述一条连接结点 a a a b b b ,权值为 c c c 的无向边。
注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

输出格式

输出包括 n n n 行,每行一个实数,精确到小数点后 3 3 3 位。第 i i i 行的实数表示结点 i i i 在社交网络中的重要程度。

输入输出样例 #1

输入 #1

4 4
1 2 1
2 3 1
3 4 1
4 1 1

输出 #1

1.000
1.000
1.000
1.000

说明/提示

对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。

对于 50 % 50\% 50% 的数据, n ≤ 10 , m ≤ 45 n \le 10 , m \le 45 n10,m45
对于 100 % 100\% 100% 的数据, n ≤ 100 , m ≤ 4500 n \le 100 , m \le 4500 n100,m4500 ,任意一条边的权值 c c c 是正整数且 1 ⩽ c ⩽ 1000 1 \leqslant c \leqslant 1000 1c1000
所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过 1 0 10 10^{10} 1010

思路:

题目中既涉及了中间节点,也涉及了所有点的最短路,很明显是用Floyd求解。本题就是在求全源最短路的同时加上一个边数记录。
记录方式有点像P1875 佳佳的魔法药水这题。
i 通向 k 的所有路径 和 k 通向 j 的所有路径相乘(默认是1),同时计算最短路:

	if(f[i][j] > f[i][k] + f[k][j]) { // 找到新的最短路了,就重新更新经过k点的路
			f[i][j] = f[i][k] + f[k][j];
			e[i][j] = e[i][k] * e[k][j];
	}

如果到达 k 点费用相同就是 i 通向 k 的所有路径 和 k 通向 j 的所有路径相乘 累加到 从 i 到 j 的总路径上

	if(f[i][j] == f[i][k] + f[k][j]) {
		e[i][j] += e[i][k] * e[k][j]; 
	}

然后就是枚举所有点,根据公式计算 I ( v ) I(v) I(v)
I ( v ) = ∑ s ≠ v , t ≠ v C s , t ( v ) C s , t I(v)=\sum_{s \ne v,t\ne v} \frac{C_{s,t}(v)}{C_{s,t}} I(v)=s=v,t=vCs,tCs,t(v)

计算求和的时候需要判断一下这条路径是i->j的最短路,同时要保证 i ≠ j , j ≠ k , i ≠ k i \ne j,j \ne k, i \ne k i=j,j=k,i=k. 只有满足了 d i s t ( i , j ) = = d i s t ( i , k ) + d i s t ( k , j ) dist(i, j) == dist(i, k) + dist(k, j) dist(i,j)==dist(i,k)+dist(k,j)这个条件的时候才说明是最短路,才会去累加 I ( v ) I(v) I(v).记得开 l o n g l o n g longlong longlong

	Rep(k, 1, n + 1) {
		ld I_u = 0;
		Rep(i, 1, n + 1) {
			if(i == k) continue;
			Rep(j, 1, n + 1) {
				if(j == k || i == j) continue;
				if(f[i][j] == f[i][k] + f[k][j]) I_u += ((ld)e[i][k] * e[k][j]) / e[i][j];
			}
		}
 		std::cout << std::fixed << std::setprecision(3) << I_u << '\n';
	}

AC code:

#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <iomanip>

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<ll, ll> PII;

#define rep(i, n) for(ll i = 0; i < n; i++)
#define Rep(i, len, n) for(ll i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000

const ll INF = std::numeric_limits<ll>::max();

ll n, m;
std::vector<std::vector<ll>> f;
std::vector<std::vector<ll>> e;

inline void Floyd() {
	Rep(k, 1, n + 1) {
		Rep(i, 1, n + 1) {
			Rep(j, 1, n + 1) {
				if(f[i][k] < INF && f[k][j] < INF) {
					if(f[i][j] > f[i][k] + f[k][j]) { // 找到新的最短路了,就重新更新经过k点的路
						f[i][j] = f[i][k] + f[k][j];
						e[i][j] = e[i][k] * e[k][j];
					}else if(f[i][j] == f[i][k] + f[k][j]) e[i][j] += e[i][k] * e[k][j]; // 不同的路径都是最小值,那么i->k的条数加上k->j的条数在乘上i~j的条数就是所有最短路i->j的路径数(k不一定与之前的相同)
				}
			}
		}
	}

}

int main(void) {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr), std::cout.tie(nullptr);
    
    std::cin >> n >> m;
    f.resize(n + 1, std::vector<ll>(n + 1, INF));
    e.resize(n + 1, std::vector<ll>(n + 1, 0));

    Rep(i, 1, n + 1) f[i][i] = 0;
    rep(i, m) {
    	ll a, b, c;
    	std::cin >> a >> b >> c;
    	f[a][b] = f[b][a] = c;
    	e[a][b] = e[b][a] = 1;
    }

    Floyd();

	Rep(k, 1, n + 1) {
		ld I_u = 0;
		Rep(i, 1, n + 1) {
			if(i == k) continue;
			Rep(j, 1, n + 1) {
				if(j == k || i == j) continue;
				if(f[i][j] == f[i][k] + f[k][j]) I_u += ((ld)e[i][k] * e[k][j]) / e[i][j];
			}
		}
 		std::cout << std::fixed << std::setprecision(3) << I_u << '\n';
	}




    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值