P3469 [POI 2008] BLO-Blockade

P3469 [POI 2008] BLO-Blockade

题目描述

B 城有 n n n 个城镇(从 1 1 1 n n n 标号)和 m m m 条双向道路。

每条道路连结两个不同的城镇,没有重复的道路,所有城镇连通。

把城镇看作节点,把道路看作边,容易发现,整个城市构成了一个无向图。

请你对于每个节点 i i i 求出,把与节点 i i i 关联的所有边去掉以后(不去掉节点 i i i 本身),无向图有多少个有序点 ( x , y ) (x,y) (x,y),满足 x x x y y y 不连通。

输入格式

第一行包含两个整数 n n n m m m

接下来 m m m 行,每行包含两个整数 a a a b b b,表示城镇 a a a b b b 之间存在一条道路。

输出格式

输出共 n n n 行,每行输出一个整数。

i i i 行输出的整数表示把与节点 i i i 关联的所有边去掉以后(不去掉节点 i i i 本身),无向图有多少个有序点 ( x , y ) (x,y) (x,y),满足 x x x y y y 不连通。

输入输出样例 #1

输入 #1

5 5
1 2
2 3
1 3
3 4
4 5

输出 #1

8
8
16
14
8

说明/提示

n ≤ 100000 n\le 100000 n100000 m ≤ 500000 m\le500000 m500000

思路:

这题分析题意就是两个点 x , y x,y x,y 不在一个连通分量里面的数量有几对
设割点是 u u u 两棵子树 i , j i, j i,j 连着 u u u ,这两颗子树的去掉的不是割点的时候有序对应该是 s i × ( n − s i ) s_i × (n - s_i) si×(nsi) 。如果去掉割点的时候单独计算,割点去了之后就分出来了 m m m 个连通块,除了每棵子树(现在是连通块), s i × ( n − s i ) s_i × (n - s_i) si×(nsi)还要单独判断割点被分离出来的(不在任何子树中的节点),也就是 (所有点 - 所有子树的和 - 割点) * 所有子树的和 ( n − ∑ i = 1 k s i − 1 ) × ∑ i = 1 k s i (n-\sum_{i = 1}^{k}s_{i}-1)×\sum_{i = 1}^{k}s_{i} (ni=1ksi1)×i=1ksi n − ∑ i = 1 k s i − 1 n-\sum_{i = 1}^{k}s_{i}-1 ni=1ksi1这一部分求得是不在任何子树中的节点,也就是孤点。然后就是割点与这些孤点也能形成有序对,与子树形成的 s i × ( n − s i ) s_i × (n - s_i) si×(nsi) 这里计算过了,剩下的就是与孤点的,也就是 1 × ( n − ∑ i = 1 k s i − 1 ) 1 × (n-\sum_{i = 1}^{k}s_{i}-1) 1×(ni=1ksi1)。然后就是把这两部分加起来就是割点额外产生的结果 ( n − ∑ i = 1 k s i − 1 ) × ∑ i = 1 k s i + ( n − ∑ i = 1 k s i − 1 ) (n-\sum_{i = 1}^{k}s_{i}-1)×\sum_{i = 1}^{k}s_{i}+(n-\sum_{i = 1}^{k}s_{i}-1) (ni=1ksi1)×i=1ksi+(ni=1ksi1), 变形 ( n − ∑ i = 1 k s i − 1 ) × ( ∑ i = 1 k s i + 1 ) (n-\sum_{i = 1}^{k}s_{i}-1)×(\sum_{i = 1}^{k}s_{i}+1) (ni=1ksi1)×(i=1ksi+1)

在这里插入图片描述
举个例子:

初始图:
  A --- B --- C --- E
       |
       D --- F
       |
       G

以割点B为例去掉边后的情况:
  A(孤点)

  C --- E(子树)

  D --- F(子树)
  |
  G

以割点D为例去掉边后的情况:
  A --- B --- C --- E(子树)

  F(孤点)

  G(孤点)

总结一下:

删除的不是割点: 2 × ( n − 1 ) 2 × (n - 1) 2×(n1)
删除的是割点: ∑ i = 1 k s i × ( n − s i ) + ( n − ∑ i = 1 k s i − 1 ) × ( ∑ i = 1 k s i + 1 ) \sum_{i = 1}^{k} s_i × (n - s_i)+(n-\sum_{i = 1}^{k}s_{i}-1)×(\sum_{i = 1}^{k}s_{i}+1) i=1ksi×(nsi)+(ni=1ksi1)×(i=1ksi+1)

Tarjan AC code:

#include <iostream>
#include <climits>
#include <limits>
#include <vector>
#include <stack>

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
typedef std::pair<int, int> PII;

#define rep(i, n) for(int i = 0; i < n; i++)
#define Rep(i, len, n) for(int i = len; i < n; i++)
#define MAX_INT 0x7fffffff
#define MIN_INT 0x80000000

const int INF = std::numeric_limits<int>::max();

int n, m, tot = 0, root;
std::vector<std::vector<int>> e;
std::vector<int> low, dfn, cut;
std::vector<ll> size;  // 存储每个子树的大小
std::vector<ll> ans;   // 存储每个节点的答案

inline void Tarjan(int u, int father) {
    low[u] = dfn[u] = ++tot;
    size[u] = 1;  // 初始化子树大小
    int child = 0;
    ll sum = 0;   // 用于累加所有子树的大小
    
    for(const int& v : e[u]) {
        if(v == father) continue;
        if(!dfn[v]) {
            Tarjan(v, u);
            low[u] = std::min(low[u], low[v]);
            size[u] += size[v];  // 更新当前节点的子树大小
            child++;
            
            if(low[v] >= dfn[u]) {
                if(u != root || child > 1) cut[u] = true; 
                // 计算该子树贡献的不连通点对数
                ans[u] += size[v] * (n - size[v]);
                sum += size[v];
            }
        } else {
            low[u] = std::min(low[u], dfn[v]);
        }
    }
    
    // 计算剩余部分的贡献
    if(cut[u]) {
        ans[u] += (n - 1 - sum) * (sum + 1);
        // 加上根节点本身的贡献
        ans[u] += (n - 1);
    }
}

int main(void) {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr), std::cout.tie(nullptr);
    
    std::cin >> n >> m;
    low.resize(n + 1);
    dfn.resize(n + 1);
    cut.resize(n + 1);
    e.resize(n + 1);
    size.resize(n + 1, 0);  // 初始化子树大小数组
    ans.resize(n + 1, 0);   // 初始化答案数组
    
    rep(i, m) {
        int a, b;
        std::cin >> a >> b;
        e[a].push_back(b);
        e[b].push_back(a);
    }

    root = 1;
    Tarjan(1, -1);

    Rep(i, 1, n + 1) {
        if(cut[i]) {
            std::cout << ans[i] << '\n';
        } else {
            // 非割点的答案是2*(n-1)
            std::cout << 2LL * (n - 1) << '\n';
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值