【数据在内存中的存储】--整数在内存中的存储,大小端字节序和字节序判断,浮点数在内存中的存储

目录

一.整数在内存中的存储

二.大小端字节序和字节序判断

2.1--什么是大小端

2.2--为什么有大小端

2.3--练习

2.3.1--练习1

2.3.2--练习2

2.3.3--练习3

2.3.4--练习4

2.3.5--练习5

2.3.6--练习6

三.浮点数在内存中的存储 

3.1--练习

3.2--浮点数的存储

3.2.1--浮点数存的过程 

3.2.2--浮点数取的过程 

3.3--题目解析


🔥个人主页:@草莓熊Lotso的个人主页

🎬作者简介:C++研发方向学习者

📖个人专栏:《C语言》

⭐️人生格言:生活是默默的坚持,毅力是永久的享受。


一.整数在内存中的存储

--整数的2进制表示方式有三种,即原码,反码,补码。

有符号的整数,三种表示方式均匀符号位和数值位两部分,符号位都是用0表示正,用1表示负,最高位的一位是被当作符号位,剩余的都是数值位。无符号整数则全是数值位,原反补都相同。

正整数的原,反,补码都相同。

负整数的三种表示方式各不相同。

原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
对于整型来说:数据存放在内存中其实存放的是二进制的补码
  • 在计算机系统中,数值⼀律用补码来表示和存储。
    原因在于,使用补码,可以将符号位和数值域统⼀处理;
    同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
    相同的,不需要额外的硬件电路。

二.大小端字节序和字节序判断

当我们了解了整数在内存中的存储后,我们再调试看看一个细节

#include <stdio.h>
int main()
{
	int a = 0x11223344;
	return 0;
}
调试的时候,我们可以看到在a中的 0x11223344 这个数字在内存中是按照字节为单位,倒着存储的。这是为什么呢?

2.1--什么是大小端

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:
  • 是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:
  • 是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
需要记住上面的这些概念。

2.2--为什么有大小端

为什么会有大小端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语言中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看
具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:⼀个 16bit short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么
0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而
KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

2.3--练习

--注意看代码的注释,辅助理解

2.3.1--练习1

/*-------------------------------------------------
练习1:请简述大端字节序和小端字节序的概念
设计⼀个小程序来判断当前机器的字节序。(10分)- 百度笔试题
--------------------------------------------------*/
#include <stdio.h>
int check_sys()
{
	int i = 1;
	return (*(char*)&i);
}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

2.3.2--练习2

//练习2
#include <stdio.h>
int main()
{
	char a = -1;
	//-1原码:10000000 00000000 0000000 00000001
	//反码:  11111111 11111111 1111111 11111110
	//补码:  11111111 11111111 1111111 11111111
	//放在char类型中,截断
	//11111111
	signed char b = -1;
	-1原码:10000000 00000000 0000000 00000001
	//反码:  11111111 11111111 1111111 11111110
	//补码:  11111111 11111111 1111111 11111111
	//放在char类型中,截断
	//11111111
	unsigned char c = -1;
	-1原码:10000000 00000000 0000000 00000001
	//反码:  11111111 11111111 1111111 11111110
	//补码:  11111111 11111111 1111111 11111111
	//放在char类型中,截断
	//11111111
	printf("a=%d,b=%d,c=%d", a, b, c);//-1 -1 255
	//a整型提升后(整型提升按本身类型来),再按占位符要求打印
	//11111111 11111111 11111111 11111111--补码
	//10000000 00000000 00000000 00000000--反码
	//10000000 00000000 00000000 00000001--原码
	// -1
	//b整型提升后
	//11111111 11111111 11111111 11111111--补码
	//10000000 00000000 00000000 00000000--反码
	//10000000 00000000 00000000 00000001--原码
	// -1
	//c整型提升后(无符号整型),整型提升补0,原反补相同
	//00000000 00000000 00000000 11111111--补码
	//00000000 00000000 00000000 11111111--反码
	//00000000 00000000 00000000 11111111--原码
	// 255
	return 0;
}

2.3.3--练习3

//练习3.1
#include <stdio.h>
int main()
{
	char a = -128;
	//-128的原码:10000000 00000000 00000000 10000000
	//反码:      11111111 11111111 11111111 01111111
	//补码:      11111111 11111111 11111111 10000000
	//放在char类型中,截断
	//10000000
	printf("%u\n", a);//4294967168
	//按char类型整型提升
	//11111111 11111111 11111111 10000000--补码
	//按占位符%u的要求打印即无符号整型,所以原反补相同,且没符号位
	//11111111 11111111 11111111 10000000--原码
	// 4294967168
	return 0;
}
//练习3.2
#include <stdio.h>
int main()
{
	char a = 128;
    //-128的原码:00000000 00000000 00000000 10000000
	//反码:      01111111 11111111 11111111 01111111
	//补码:      01111111 11111111 11111111 10000000
	//放在char类型中,截断
	//10000000
	printf("%u\n", a);// 4294967168
	//按char类型整型提升
	//11111111 11111111 11111111 10000000--补码
	//按占位符%u的要求打印即无符号整型,所以原反补相同,且没符号位
	//11111111 11111111 11111111 10000000--原码
	// 4294967168
	return 0;
}

2.3.4--练习4

//练习4
#include <stdio.h>
#include<string.h>
int main()
{
	char a[1000];//char类型-128~127
	int i;
	for (i = 0; i < 1000; i++)
	{
		a[i] = -1 - i;
	}
	//-1 -2 -3 …… -127,-128,-129
	//-129超出了范围,解读成127,后面继续这样解读,一直到0
	//再到-1继续开始循环
	printf("%zu", strlen(a));// 255
	//strlen测\0之前的长度。从-127到1,所以是255
	return 0;
}

2.3.5--练习5

//练习5.1
#include <stdio.h>
unsigned char i = 0;//unsigned char类型 0~255
int main()
{
	//所以i<=255恒成立,255+1也会解读成0,再继续循环
	for (i = 0;i <= 255;i++)
	{
		printf("hello world\n");
		//死循环,一直打印
	}
	return 0;
}
//练习5.2
#include <stdio.h>
int main()
{
	unsigned int i;//无符号整型恒大于0,所以条件一直成立
	for (i = 9; i >= 0; i--)
	{
		printf("%u\n", i);
		//死循环,9 8 …… 0,一个很大的数,一直减小再到0,接着循环
	}
	return 0;
}

2.3.6--练习6

//练习6
#include <stdio.h>
//X86环境 小端字节序
int main()
{
	int a[4] = { 1, 2, 3, 4 };
	int* ptr1 = (int*)(&a + 1);
	int* ptr2 = (int*)((int)a + 1);//转换成整型+1,只跳过一个字节
	printf("%x,%x", ptr1[-1], *ptr2);
	//0x 00 00 00 04--4
	//0x 02 00 00 00--2000000
	return 0;
}

三.浮点数在内存中的存储 

常见的浮点数:3.14159、1E10(1*10^{10})等,浮点数家族包括: float double long double 类型。
浮点数表示的范围: float.h 中定义

3.1--练习

#include <stdio.h>
int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

 输出的结果会是啥呢,我们先看看,然后学习完后面的知识再来解析一下。

3.2--浮点数的存储

上面的代码中, n *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这
么大?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个二进制浮点数V可以表示成下面的形式:
V = (−1) S M ∗ 2 E
  • (−1) S 表示符号位,当S=0,V为正数;当S=1,V为负数
  • M 表示有效数字,M是大于等于1,小于2的,十进制转换成二进制
  • 2^{E} 表示指数位

举例来看:

十进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:
  • 对于32位的浮点数(float),最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
  • 对于64位的浮点数(double),最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

 float类型浮点数内存分配

  double类型浮点数内存分配

3.2.1--浮点数存的过程 

 IEEE 754 对有效数字M和指数E,还有⼀些特别规定。

前面说过, 1 M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小 数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂
首先,E为⼀个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001

3.2.2--浮点数取的过程 

指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1(常规情况)
这时,浮点数就采用下面的规则表示·,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其二进制表示形式为:
1.    0  01111110  00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
1.   0 00000000 00100000000000000000000
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
1.   0 11111111 00010000000000000000000

 关于浮点数的表示规则就到这里了。

3.3--题目解析

--学完了上面的知识后,我们再来解析下一开始的练习吧~

 先看这一部分

int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);//9
	printf("*pFloat的值为:%f\n", *pFloat);//0.000000

 9存在int类型里用%d可以正常打印出来9

但是用%f就需要转换一下了,9以整数形式存储到内存中,得到如下二进制序列

1.  0000 0000 0000 0000 0000 0000 0000 1001

  • 首先,将 9 的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0
  • 后面8位的指数E=00000000 ,
  • 最后23位的有效数字M=000 0000 0000 0000 0000 1001。
由于指数E全为0,所以E=1-127=-126
故浮点数V写成以下形式:
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
很明显v是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

 再来看看第二部分

*pFloat = 9.0;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);

9.0存在浮点数类型中用%f可以正常打印出来9.0

但是用%d打印就要转换一下了

  • 首先,浮点数9.0 等于二进制的1001.0,即换算成科学计数法是:1.001×2^3
  • 所以: 9.0  = (−1) ^0 ∗ (1.001) ∗ 2^3
  • 那么,第⼀位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010
所以,写成二进制形式,应该是S+E+M,即
1.     0    10000010    001 0000 0000 0000 0000 0000

 将这个32位的二进制数,当作整数来解析,就是整数存在内存中的补码,原码解析完是1091567616


往期回顾:

【C语言内存函数】--memcpy和memmove的使用和模拟实现,memset函数的使用,memcmp函数的使用

【C语言字符函数和字符串函数(二)】--strcmp,strstr的使用和模拟实现,strncpy,strncat,strncmp函数的使用,strock,strerror函数的使用

结语:本篇文章就到此结束了,继前面一篇文章后,在此篇文章中给大家继续分享了数据在内存中的存储相关知识点,如整数在内存中的存储,大小端字节序和字节序判断,浮点数在内存中的存储等,后续会继续给分享其它内容,如果文章对你有帮助的话,欢迎评论,点赞,收藏加关注,感谢大家的支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值