【数据结构初阶】--二叉树(五)

 🔥个人主页:@草莓熊Lotso

🎬作者简介:C++研发方向学习者

📖个人专栏: 《C语言》 《数据结构与算法》《C语言刷题集》《Leetcode刷题指南》

⭐️人生格言:生活是默默的坚持,毅力是永久的享受。  

前言: 通过前面几篇博客我们已经完成了前中后序的接口实现,我们现在开始需要进行其它二叉树常用方法的实现,比如二叉树节点个数,叶子节点个数等。还是和之前一样分部分实现,最后再展示全部的代码。


目录

一.求二叉树节点个数

代码实现: 

test.c: 

二.求二叉树叶子节点个数

代码实现:

test.c: 

 三.求二叉树第k层节点个数

代码实现: 

test.c: 

 四.求二叉树的深度/高度

 代码实现:

test.c: 

 五.二叉树查找值为x的节点

代码实现:

test.c:

 六.二叉树的销毁 

代码实现:

 七.代码展现

Tree.h:

Tree.c:

test.c:


一.求二叉树节点个数

--我们先来实现一个求二叉树的节点个数的接口,在正式开始之前我们先把上次写的代码里的test.c中创建树的代码优化一下,这样方便后续操作

#include"Tree.h"

BTNode* buyNode(char x)
{
	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
	newnode->data = x;
	newnode->left = newnode->right = NULL;
	return newnode;
}
BTNode* CreateTree()
{
	BTNode* nodeA = buyNode('A');
	BTNode* nodeB = buyNode('B');
	BTNode* nodeC = buyNode('C');
	BTNode* nodeD = buyNode('D');
	BTNode* nodeE = buyNode('E');
	BTNode* nodeF = buyNode('F');

	nodeA->left = nodeB;
	nodeA->right = nodeC;
	nodeB->left = nodeD;
	nodeC->left = nodeE;
	nodeC->right = nodeF;

	return nodeA;
}

void test1()
{
	BTNode* root = CreateTree();

	//前中后序遍历
	//PreOrder(root);
	//InOrder(root);
	//PostOrder(root);
}

int main()
{
	test1();
	return 0;
}

--优化完之后,我们就可以开始实现求二叉树节点个数的接口了 

  •  二叉树结点个数=根节点+左子树结点个数+右子树结点个数

代码实现: 

// 二叉树结点个数=根节点+左子树节点个数+右子树节点个数
int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	return 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
}

    图示如下:

    test.c: 

    #include"Tree.h"
    
    BTNode* buyNode(char x)
    {
    	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    	newnode->data = x;
    	newnode->left = newnode->right = NULL;
    	return newnode;
    }
    BTNode* CreateTree()
    {
    	BTNode* nodeA = buyNode('A');
    	BTNode* nodeB = buyNode('B');
    	BTNode* nodeC = buyNode('C');
    	BTNode* nodeD = buyNode('D');
    	BTNode* nodeE = buyNode('E');
    	BTNode* nodeF = buyNode('F');
    
    	nodeA->left = nodeB;
    	nodeA->right = nodeC;
    	nodeB->left = nodeD;
    	nodeC->left = nodeE;
    	nodeC->right = nodeF;
    
    	return nodeA;
    }
    
    void test1()
    {
    	BTNode* root = CreateTree();
    
    	//前中后序遍历
    	//PreOrder(root);
    	//InOrder(root);
    	//PostOrder(root);
    
    	//二叉树结点个数
    	printf("Size: %d\n", BinaryTreeSize(root));
    }
    
    int main()
    {
    	test1();
    	return 0;
    }

    --测试完成,打印出来没有问题,退出码为0 


    二.求二叉树叶子节点个数

    --二叉树的叶子节点就是左右孩子都为空的节点

    • 二叉树叶子节点个数=左子树叶子节点个数+右子树叶子节点个数

    代码实现:

    // 二叉树叶子结点个数=左子树叶子节点个数+右子树节点个数
    int BinaryTreeLeafSize(BTNode* root)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    	//判断是否为叶子节点(没有左右孩子)
    	if (root->left == NULL && root->right == NULL)
    	{
    		return 1;
    	}
    
    	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
    }

    图示如下: 

    test.c: 

    #include"Tree.h"
    
    BTNode* buyNode(char x)
    {
    	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    	newnode->data = x;
    	newnode->left = newnode->right = NULL;
    	return newnode;
    }
    BTNode* CreateTree()
    {
    	BTNode* nodeA = buyNode('A');
    	BTNode* nodeB = buyNode('B');
    	BTNode* nodeC = buyNode('C');
    	BTNode* nodeD = buyNode('D');
    	BTNode* nodeE = buyNode('E');
    	BTNode* nodeF = buyNode('F');
    
    	nodeA->left = nodeB;
    	nodeA->right = nodeC;
    	nodeB->left = nodeD;
    	nodeC->left = nodeE;
    	nodeC->right = nodeF;
    
    	return nodeA;
    }
    
    void test1()
    {
    	BTNode* root = CreateTree();
    
    	//前中后序遍历
    	//PreOrder(root);
    	//InOrder(root);
    	//PostOrder(root);
    
    	//二叉树结点个数
    	printf("Size: %d\n", BinaryTreeSize(root));
    	//二叉树叶子结点个数
    	printf("LeafSize: %d\n", BinaryTreeLeafSize(root));
    }
    
    int main()
    {
    	test1();
    	return 0;
    }

    --测试完成,打印没有问题,退出码为0


     三.求二叉树第k层节点个数

    --当k==1时当前节点就是第k层节点

    • 二叉树第k层节点个数=左子树第k-1层节点个数+右子树第k-1层节点个数

    代码实现: 

    // 二叉树第k层节点个数=左子树第K-1层节点个数+右子树第k-1层节点个数
    int BinaryTreeLevelKSize(BTNode* root, int k)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    	//判断是否为第k层
    	if (k == 1)
    	{
    		return 1;
    	}
    	//每次注意要k-1
    	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
    }

    图示如下: 

    test.c: 

    #include"Tree.h"
    
    BTNode* buyNode(char x)
    {
    	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    	newnode->data = x;
    	newnode->left = newnode->right = NULL;
    	return newnode;
    }
    BTNode* CreateTree()
    {
    	BTNode* nodeA = buyNode('A');
    	BTNode* nodeB = buyNode('B');
    	BTNode* nodeC = buyNode('C');
    	BTNode* nodeD = buyNode('D');
    	BTNode* nodeE = buyNode('E');
    	BTNode* nodeF = buyNode('F');
    
    	nodeA->left = nodeB;
    	nodeA->right = nodeC;
    	nodeB->left = nodeD;
    	nodeC->left = nodeE;
    	nodeC->right = nodeF;
    
    	return nodeA;
    }
    
    void test1()
    {
    	BTNode* root = CreateTree();
    
    	//前中后序遍历
    	//PreOrder(root);
    	//InOrder(root);
    	//PostOrder(root);
    
    	//二叉树结点个数
    	printf("Size: %d\n", BinaryTreeSize(root));
    	//二叉树叶子结点个数
    	printf("LeafSize: %d\n", BinaryTreeLeafSize(root));
    	//第k层节点个数
    	printf("K Size: %d\n", BinaryTreeLevelKSize(root,3));
    }
    
    int main()
    {
    	test1();
    	return 0;
    }

    --测试完成,打印没有问题,退出码为0


     四.求二叉树的深度/高度

    • 二叉树的高度=根节点+max(左子树的高度,右子树的高度)

     代码实现:

    //二叉树的深度/高度=根节点+max(左子树高度,右子树高度)
    int BinaryTreeDepth(BTNode* root)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    
    	int leftdepth = BinaryTreeDepth(root->left);
    	int rightdepth = BinaryTreeDepth(root->right);
    	return 1 + (leftdepth > rightdepth ? leftdepth : rightdepth);
    }

    图示如下:

    test.c: 

    #include"Tree.h"
    
    BTNode* buyNode(char x)
    {
    	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    	newnode->data = x;
    	newnode->left = newnode->right = NULL;
    	return newnode;
    }
    BTNode* CreateTree()
    {
    	BTNode* nodeA = buyNode('A');
    	BTNode* nodeB = buyNode('B');
    	BTNode* nodeC = buyNode('C');
    	BTNode* nodeD = buyNode('D');
    	BTNode* nodeE = buyNode('E');
    	BTNode* nodeF = buyNode('F');
    
    	nodeA->left = nodeB;
    	nodeA->right = nodeC;
    	nodeB->left = nodeD;
    	nodeC->left = nodeE;
    	nodeC->right = nodeF;
    
    	return nodeA;
    }
    
    void test1()
    {
    	BTNode* root = CreateTree();
    
    	//前中后序遍历
    	//PreOrder(root);
    	//InOrder(root);
    	//PostOrder(root);
    
    	//二叉树结点个数
    	printf("Size: %d\n", BinaryTreeSize(root));
    	//二叉树叶子结点个数
    	printf("LeafSize: %d\n", BinaryTreeLeafSize(root));
    	//第k层节点个数
    	printf("K Size: %d\n", BinaryTreeLevelKSize(root,3));
    	//二叉树的深度/高度
    	printf("Depth: %d\n", BinaryTreeDepth(root));
    }
    
    int main()
    {
    	test1();
    	return 0;
    }

    --测试完成,打印没有问题,退出码为0


     五.二叉树查找值为x的节点

    --递归查找,找到了就返回当前节点,如果是在左子树中找到就直接返回,没找到继续来到右子树找,最好都没找到就返回NULL

    代码实现:

    // 二叉树查找值为x的结点
    BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
    {
    	if (root == NULL)
    	{
    		return NULL;
    	}
    	if (root->data == x)
    	{
    		return root;
    	}
    
    	BTNode*leftroot = BinaryTreeFind(root->left, x);
    	//如果leftroot不为空就是找到了直接返回
    	if (leftroot)
    	{
    		return leftroot;
    	}
    	//没找到就继续右子树找
    	BTNode* rightroot = BinaryTreeFind(root->right, x);
    	if (rightroot)
    	{
    		return rightroot;
    	}
    	//都没找到就返回空
    	return NULL;
    }

    图示如下: 

    test.c:

    #include"Tree.h"
    
    BTNode* buyNode(char x)
    {
    	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    	newnode->data = x;
    	newnode->left = newnode->right = NULL;
    	return newnode;
    }
    BTNode* CreateTree()
    {
    	BTNode* nodeA = buyNode('A');
    	BTNode* nodeB = buyNode('B');
    	BTNode* nodeC = buyNode('C');
    	BTNode* nodeD = buyNode('D');
    	BTNode* nodeE = buyNode('E');
    	BTNode* nodeF = buyNode('F');
    
    	nodeA->left = nodeB;
    	nodeA->right = nodeC;
    	nodeB->left = nodeD;
    	nodeC->left = nodeE;
    	nodeC->right = nodeF;
    
    	return nodeA;
    }
    
    void test1()
    {
    	BTNode* root = CreateTree();
    
    	//前中后序遍历
    	//PreOrder(root);
    	//InOrder(root);
    	//PostOrder(root);
    
    	//二叉树结点个数
    	printf("Size: %d\n", BinaryTreeSize(root));
    	//二叉树叶子结点个数
    	printf("LeafSize: %d\n", BinaryTreeLeafSize(root));
    	//第k层节点个数
    	printf("K Size: %d\n", BinaryTreeLevelKSize(root,3));
    	//二叉树的深度/高度
    	printf("Depth: %d\n", BinaryTreeDepth(root));
    	//二叉树查找值为x的结点
    	BTNode* pos = BinaryTreeFind(root, 'E');
    	if (pos)
    	{
    		printf("找到了\n");
    	}
    	else {
    		printf("没找到\n");
    	}
    }
    
    int main()
    {
    	test1();
    	return 0;
    }

    --测试完成,找的到E,退出码为0


     六.二叉树的销毁 

    --由于提前释放根节点无法找到其左右节点,所以我们得采用后续遍历的思想,最后处理根节点,

    还有这里得传地址,后续的使用也需要注意一下写法。

    代码实现:

    // 二叉树销毁--采用后序遍历的思想
    void BinaryTreeDestory(BTNode** root)
    {
    	if (*root == NULL)
    	{
    		return;
    	}
    
    	BinaryTreeDestory(&(*root)->left);
    	BinaryTreeDestory(&(*root)->right);
    	free(*root);
    		*root = NULL;
    }
    

    图示如下:


     七.代码展现

    Tree.h:

    #pragma once
    #include<stdio.h>
    #include<assert.h>
    #include<stdlib.h>
    #include<stdbool.h>
    
    typedef char BTDataType;
    typedef struct BinaryNode
    {
    	BTDataType data;
    	struct BinaryNode* left;//左孩子
    	struct BinaryNode* right;//右孩子
    }BTNode;
    
    //前序遍历
    void PreOrder(BTNode* root);
    
    //中序遍历
    void InOrder(BTNode* root);
    
    //后序遍历
    void PostOrder(BTNode* root);
    
    // 二叉树结点个数
    int BinaryTreeSize(BTNode* root);
    
    // 二叉树叶子结点个数
    int BinaryTreeLeafSize(BTNode* root);
    
    // 二叉树第k层结点个数
    int BinaryTreeLevelKSize(BTNode* root, int k);
    
    //二叉树的深度/高度
    int BinaryTreeDepth(BTNode* root);
    
    // 二叉树查找值为x的结点
    BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
    
    // 二叉树销毁
    void BinaryTreeDestory(BTNode** root);

    Tree.c:

    #include"Tree.h"
    
    //前序遍历
    void PreOrder(BTNode* root)
    {
    	if (root == NULL)
    	{
    		printf("NULL ");
    		return;
    	}
    	//根左右
    	printf("%c ", root->data);
    	PreOrder(root->left);
    	PreOrder(root->right);
    }
    
    //中序遍历
    void InOrder(BTNode* root)
    {
    	if (root == NULL)
    	{
    		printf("NULL ");
    		return;
    	}
    
    	//左根右
    	InOrder(root->left);
    	printf("%c ", root->data);
    	InOrder(root->right);
    }
    
    //后序遍历
    void PostOrder(BTNode* root)
    {
    	if (root == NULL)
    	{
    		printf("NULL ");
    		return;
    	}
    
    	//左右根
    	PostOrder(root->left);
    	PostOrder(root->right);
    	printf("%c ", root->data);
    }
    
    // 二叉树结点个数=根节点+左子树节点个数+右子树节点个数
    int BinaryTreeSize(BTNode* root)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    	return 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
    }
    
    // 二叉树叶子结点个数=左子树叶子节点个数+右子树节点个数
    int BinaryTreeLeafSize(BTNode* root)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    	//判断是否为叶子节点(没有左右孩子)
    	if (root->left == NULL && root->right == NULL)
    	{
    		return 1;
    	}
    
    	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
    }
    
    // 二叉树第k层节点个数=左子树第K-1层节点个数+右子树第k-1层节点个数
    int BinaryTreeLevelKSize(BTNode* root, int k)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    	//判断是否为第k层
    	if (k == 1)
    	{
    		return 1;
    	}
    	//每次注意要k-1
    	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
    }
    
    //二叉树的深度/高度=根节点+max(左子树高度,右子树高度)
    int BinaryTreeDepth(BTNode* root)
    {
    	if (root == NULL)
    	{
    		return 0;
    	}
    
    	int leftdepth = BinaryTreeDepth(root->left);
    	int rightdepth = BinaryTreeDepth(root->right);
    	return 1 + (leftdepth > rightdepth ? leftdepth : rightdepth);
    }
    
    // 二叉树查找值为x的结点
    BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
    {
    	if (root == NULL)
    	{
    		return NULL;
    	}
    	if (root->data == x)
    	{
    		return root;
    	}
    
    	BTNode*leftroot = BinaryTreeFind(root->left, x);
    	//如果leftroot不为空就是找到了直接返回
    	if (leftroot)
    	{
    		return leftroot;
    	}
    	//没找到就继续右子树找
    	BTNode* rightroot = BinaryTreeFind(root->right, x);
    	if (rightroot)
    	{
    		return rightroot;
    	}
    	//都没找到就返回空
    	return NULL;
    }
    
    // 二叉树销毁--采用后序遍历的思想
    void BinaryTreeDestory(BTNode** root)
    {
    	if (*root == NULL)
    	{
    		return;
    	}
    
    	BinaryTreeDestory(&(*root)->left);
    	BinaryTreeDestory(&(*root)->right);
    	free(*root);
    		*root = NULL;
    }

    test.c:

    #include"Tree.h"
    
    BTNode* buyNode(char x)
    {
    	BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
    	newnode->data = x;
    	newnode->left = newnode->right = NULL;
    	return newnode;
    }
    BTNode* CreateTree()
    {
    	BTNode* nodeA = buyNode('A');
    	BTNode* nodeB = buyNode('B');
    	BTNode* nodeC = buyNode('C');
    	BTNode* nodeD = buyNode('D');
    	BTNode* nodeE = buyNode('E');
    	BTNode* nodeF = buyNode('F');
    
    	nodeA->left = nodeB;
    	nodeA->right = nodeC;
    	nodeB->left = nodeD;
    	nodeC->left = nodeE;
    	nodeC->right = nodeF;
    
    	return nodeA;
    }
    
    void test1()
    {
    	BTNode* root = CreateTree();
    
    	//前中后序遍历
    	//PreOrder(root);
    	//InOrder(root);
    	//PostOrder(root);
    
    	//二叉树结点个数
    	printf("Size: %d\n", BinaryTreeSize(root));
    	//二叉树叶子结点个数
    	printf("LeafSize: %d\n", BinaryTreeLeafSize(root));
    	//第k层节点个数
    	printf("K Size: %d\n", BinaryTreeLevelKSize(root,3));
    	//二叉树的深度/高度
    	printf("Depth: %d\n", BinaryTreeDepth(root));
    	//二叉树查找值为x的结点
    	BTNode* pos = BinaryTreeFind(root, 'E');
    	if (pos)
    	{
    		printf("找到了\n");
    	}
    	else {
    		printf("没找到\n");
    	}
    	// 二叉树销毁
    	BinaryTreeDestory(&root);
    }
    
    int main()
    {
    	test1();
    	return 0;
    }

    往期回顾:

    【数据结构初阶】--树和二叉树先导篇

    【数据结构初阶】--二叉树(二)

    【数据结构初阶】--二叉树(三)

    【数据结构初阶】--二叉树(四)

    结语:在这篇博客中我们一起实现了二叉树的大部分常用接口,后面还有一个判断是否为完全二叉树和一个层序遍历的实现。如果文章对你有帮助的话,欢迎评论,点赞,收藏加关注,感谢大家的支持。

    评论 8
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值