其他:
134. 加油站
跳转: 134. 加油站
学习: 代码随想录公开讲解
问题:
在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
思路:
只要油大于等于消费就一定可以找到一个位置满足形成,因为整个数组切割为二,一段中耗不起油,剩下的部分油溢出就会更多.
由于总量大于等于0,总能找到加上某一块满足当前块所需油量
复杂度:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)
代码:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int curSum = 0;
int totalSum = 0;
int ans = 0;
for(int i=0;i<gas.length;i++){
if(curSum<0){
ans = i;
curSum = 0;
}
int tmp = gas[i]-cost[i];
totalSum+=tmp;
curSum+=tmp;
}
return totalSum<0?-1:ans;
}
}
135. 分发糖果
跳转: 135. 分发糖果
学习: 代码随想录公开讲解
问题:
n
个孩子站成一排。给你一个整数数组 ratings
表示每个孩子的评分。
你需要按照以下要求,给这些孩子分发糖果:
- 每个孩子至少分配到
1
个糖果。 - 相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
思路:
贪心发糖,从前往后看递增至少比前面多1,从后往前看递增比后面多1
或者关注三种状态,递增递减与水平,水平是加上去除头部的长度,递增是加上2+…+(长度+1),递减是1+…+长度但需要判断递减前首部分糖个数是否小于长度+1
复杂度:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)
代码(贪心):
class Solution {
public int candy(int[] ratings) {
int n = ratings.length;
int[] ans = new int[n];
Arrays.fill(ans,1);
for(int i=1;i<n;i++){
if(ratings[i]>ratings[i-1]) ans[i] = ans[i-1]+1;
}
for(int i=n-2;i>=0;i--){
if(ratings[i]>ratings[i+1]) ans [i] = Math.max(ans[i],ans[i+1]+1);
}
int res = 0;
for(int i:ans){
res += i;
}
return res;
}
}
代码(三种状态):
class Solution {
public int candy(int[] ratings) {
int preMax = 0;
int state = 0;
int l = 0;
int pre = ratings[0];
int[] sums = new int[20001];
int tmp = 0;
for (int i = 0; i <= 20000; i++) {
tmp += i;
sums[i] = tmp;
}
int ans = 0;
for (int i : ratings) {
tmp = i > pre ? 1 : i < pre ? -1 : 0;
if (state == tmp) {
l++;
} else {
if (state == 0) {
ans += l;
preMax = 1;
} else if (state > 0) {
ans += sums[l + 1] - 1;
preMax = l + 1;
} else if (state < 0) {
ans += sums[l];
if (l + 1 > preMax) {
ans += l + 1 - preMax;
}
preMax = 1;
}
state = tmp;
l=1;
}
pre = i;
}
if (state == 0) {
ans += l;
preMax = 1;
} else if (state > 0) {
ans += sums[l + 1] - 1;
preMax = l + 1;
} else if (state < 0) {
ans += sums[l];
if (l + 1 > preMax) {
ans += l + 1 - preMax;
}
preMax = 1;
}
return ans;
}
}
860. 柠檬水找零
跳转: 860. 柠檬水找零
学习: 代码随想录公开讲解
问题:
在柠檬水摊上,每一杯柠檬水的售价为 5
美元。顾客排队购买你的产品,(按账单 bills
支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5
美元、10
美元或 20
美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5
美元。
注意,一开始你手头没有任何零钱。
给你一个整数数组 bills
,其中 bills[i]
是第 i
位顾客付的账。如果你能给每位顾客正确找零,返回 true
,否则返回 false
。
思路:
贪心,能找10块不找5块
复杂度:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)
代码:
class Solution {
public boolean lemonadeChange(int[] bills) {
int five = 0;
int ten = 0;
for(int i:bills){
if(i==5) five++;
else if(i==10){
if(five<=0) return false;
ten++;
five--;
}
else{
if(ten>0) ten--;
else five-=2;
if(five<=0) return false;
five--;
}
}
return true;
}
}
406. 根据身高重建队列
跳转: 406. 根据身高重建队列
学习: 代码随想录公开讲解
问题:
假设有打乱顺序的一群人站成一个队列,数组 people
表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki]
表示第 i
个人的身高为 hi
,前面 正好 有 ki
个身高大于或等于 hi
的人。
请你重新构造并返回输入数组 people
所表示的队列。返回的队列应该格式化为数组 queue
,其中 queue[j] = [hj, kj]
是队列中第 j
个人的属性(queue[0]
是排在队列前面的人)。
思路:
先排值大的,因为后插入小的对大的没有影响
值相等先排逻辑上靠前的,因为后插对前面的没有影响
复杂度:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)
代码:
class Solution {
public int[][] reconstructQueue(int[][] people) {
Arrays.sort(people,(a,b)->b[0]==a[0]?a[1]-b[1]:b[0]-a[0]);
ArrayList<int[]> list = new ArrayList<>();
for(int i=0;i<people.length;i++){
list.add(people[i][1],people[i]);
}
int[][] res = new int[people.length][2];
int j=0;
for(int[] i:list){
res[j++] = i;
}
return res;
}
}
1399. 统计最大组的数目(每日一题)
跳转: 1399. 统计最大组的数目
问题:
给你一个整数 n 。请你先求出从 1 到 n 的每个整数 10 进制表示下的数位和(每一位上的数字相加),然后把数位和相等的数字放到同一个组中。
请你统计每个组中的数字数目,并返回数字数目并列最多的组有多少个。
思路:
暴力,哈希计数再遍历哈希表去求值即可
复杂度:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)
代码:
class Solution {
public int countLargestGroup(int n) {
int[] hash = new int[37];
for(int i=1;i<=n;i++){
hash[bitSum(i)]++;
}
int ans = 0;
int max = 0;
for(int i:hash){
if(i>max){
max = i;
ans = 1;
}else if(i==max) ans++;
}
return ans;
}
int bitSum(int x){
int ans = 0;
while(x>0){
ans+=x%10;
x/=10;
}
return ans;
}
}
总结
练习了贪心算法,多状态贪心最好确定好遍历其他状态的顺序一个个单看.