【开题答辩实录分享】以《基于小程序的精品衣柜系统的设计与实现》为例进行答辩实录分享

大家好,我是韩立。

写代码、跑算法、做产品,从 Java、PHP、Python 到 Golang、小程序、安卓,全栈都玩;带项目、讲答辩、做文档,也懂降重技巧。
这些年一直在帮同学定制系统、梳理论文、模拟开题,积累了不少“避坑”经验。

新学期开始,很多人卡在选题:想要新颖,又怕做不完。接下来我会持续分享一批“好上手且有亮点”的选题思路和完整开题答辩案例,给你参考,也给你灵感。关注我,毕业设计不再头秃!



核心为解决用户穿衣搭配烦恼,依托微信小程序实现衣物管理与智能推荐功能。

用户可完成账号注册登录,上传衣物信息(含图片、类型、适用场合等),经管理员在审核管理模块审核通过后,系统通过分类管理模块对衣物按类型、材质等分类存储,再由统计管理模块分析用户穿衣习惯;

结合天气数据与用户所需场合,通过服装推荐模块为用户推送合适衣物,搭配管理模块提供衣物搭配方案。

管理员可通过系统管控用户账号、审核衣物信息、维护分类与统计数据,整体实现衣物数字化管理与个性化穿搭推荐,提升用户穿衣便捷性。



开题陈述】

各位老师好,我是H同学,课题是《基于小程序的精品衣柜系统的设计与实现》。系统把传统衣柜‘搬’进微信,用户拍照上传衣物,小程序自动分类、统计并依据天气与场合智能推荐穿搭

主要模块有上传识别、衣物管理、智能搭配、天气联动、用户中心。

技术栈:小程序原生+WXML/WXSS,后台PHP+Apache,数据库MySQL,用Ajax通信,本地Windows10+PHPStorm开发,计划2025年5月交付。


答辩开始

评委老师:用户一次性上传10张照片,如何保证压缩后清晰度又省流量?

答辩学生:前端用canvas把图片等比缩放到1080px宽,quality设0.8,单张压到300KB以内,再统一formData上传,节省约60%流量。


评委老师:衣柜里的‘分类’是自动完成的,你用了哪种算法或接口?

答辩学生:调用腾讯云‘图像标签’API,返回上衣/裤子/鞋子等标签,准确率92%,再写规则映射到本地category表,后台入库。


评委老师:如果用户误把围巾标成‘上衣’,如何手动纠正并同步更新训练数据?

答辩学生:前端长按卡片弹出‘修改分类’,后台把纠正后的URL+正确标签写入correct_log表,每月导出一次做增量重训,提高模型精度。


评委老师:MySQL里存衣服图片,你是存文件路径还是Base64?为什么?

答辩学生:存相对路径/Uploads/uid/filename.jpg,图片放OSS;Base64会让行体积暴增30%+且无法走CDN,查询慢。


评委老师:搭配推荐需要同时满足‘天气+场合+个人喜好’三个维度,数据库怎么设计才能快速查到候选集?

答辩学生:建一张match_rule表,字段:weather_tag、occasion、user_style、category、score;推荐时先where天气and场合and风格,按score倒序limit 20,再走索引覆盖。


评委老师:小程序审核要求用户上传图片先做内容安全校验,你如何落地?

答辩学生:先调wx.mediaCheckAsync API,把图片转base64 POST给微信,返回pass才允许进衣物表;不通过前端弹窗‘含敏感内容’并删除临时文件。


评委老师:系统上线后想增加‘AI虚拟试穿’功能,需要在前端实时叠加衣服模型到人体,请给出关键技术路线,并说明如何与现有PHP后台解耦。

答辩学生:前端用WebGL+Three.js加载衣服GLB模型,通过MediaPipe BlazePose获取33点人体关键点,实时驱动模型贴合;只把最终截图mask和参数JSON发给新开的‘AI-render’微服务(Node+TensorFlow.js),生成试穿图后回传OSS,PHP仍负责业务数据,不耦合渲染计算。


评委总结

H同学对图片压缩、云API调用、索引设计等细节回答扎实,尤其增量重训和AI渲染解耦思路清晰。建议在后续测试中给出真实场景下的推荐准确率,并考虑北方暖气室内外温差场景的分级策略。总体方案可行,进度安排合理,同意开题,按2025年计划推进。


以上是H同学的毕业设计答辩过程,如果你现在还没有参加答辩,还是开题阶段,已经选好了题目不知道怎么写开题报告,可以下面找找有没有自己符合自己题目的开题报告内容,列表中的开题报告都是往届真实的开题报告,可发送使用或参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值