格子游戏(并查集--二维转一维)

文章介绍了一个在n×n点阵上进行的两人游戏,玩家轮流画边,目标是形成封闭圈。程序需要判断在多少步后游戏结束或者是否结束。解决方案是通过将二维数组转化为一维并查集,实现查找和合并操作,检测是否存在环路来确定游戏状态。
摘要由CSDN通过智能技术生成

题目:1250. 格子游戏 - AcWing题库

Alice和Bob玩了一个古老的游戏:首先画一个 n×n的点阵(下图 n=3)。

接着,他们两个轮流在相邻的点之间画上红边和蓝边:

直到围成一个封闭的圈(面积不必为 11)为止,“封圈”的那个人就是赢家。因为棋盘实在是太大了,他们的游戏实在是太长了!

他们甚至在游戏中都不知道谁赢得了游戏。

于是请你写一个程序,帮助他们计算他们是否结束了游戏?

输入格式

输入数据第一行为两个整数 n表示点阵的大小,m表示一共画了 m 条线。

以后 m 行,每行首先有两个数字 (x,y),代表了画线的起点坐标,接着用空格隔开一个字符,假如字符是 D,则是向下连一条边,如果是 R 就是向右连一条边。

输入数据不会有重复的边且保证正确。

输出格式

输出一行:在第几步的时候结束。

假如 m步之后也没有结束,则输出一行“draw”。

数据范围

1≤n≤200
1≤m≤24000

输入样例:
3 5
1 1 D
1 1 R
1 2 D
2 1 R
2 2 D
输出样例:
4

 总结:

对于并查集来说,一维更加方便,故将2维数组转化为一维数组进行并查集的查找

转化方法:q[n][n]====>q[n*n]=x*n+y

条件:x,y,坐标必须从0开始

代码献上:(并查集--二维转一维)

#include <iostream>

using namespace std;

typedef long long ll;

const int N = 40009;
int n, m, q[N],x,y;

int find(int x)                                //查找函数
{
    return q[x] == x ? q[x] : q[x] = find(q[x]);
}

void merge(int x, int y)                     //合并操作函数
{
    q[find(x)] = find(y);
}

void init()                                 //并查集的初始化
{
 for (int i = 1; i <= n * n; ++i) q[i] = i;
}
                                            //维度的转化
int  change(int a, int b)                  //2维转化为1维  一维的并查集方便
{                                          //条件:x,y坐标需要从0开始
    return a * n + b;
}

int main()
{
    cin >> n >> m;
    init();

    char c;
    for (int i = 1, a, b; i <= m; ++i)
    {
        cin >> a >> b >> c;                //注意这不是输入的点的坐标
        a--, b--;             
         x = change(a, b);
        if (c == 'D') y = change(a+1, b);  //向下连边
        else y = change(a, b+1) ;          //向右连边

        if (find(x) == find(y))            //如果在同一格子内
        {
            cout << i << endl;
            return 0;
        }
        merge(x, y);                       //合并两个集合
    }
    cout << "draw" << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值