排序算法之堆排序

一:什么是堆

堆是一种数据结构,一种叫做完全二叉树的数据结构。

1.1、堆的性质

大根堆:每个节点的值都大于或者等于它的左右子节点的值。

小根堆:每个节点的值都小于或者等于它的左右子节点的值。
在这里插入图片描述
我们对上面的图中每个数都进行了标记,上面的结构映射成数组就变成了下面这个样子
在这里插入图片描述
那么这种堆结构,我们实际上是可以使用数组来进行存储表示的。

通过观察,我们可以发现如下规律:
查找数组中某个数的父结点和左右孩子结点,已知索引为 i ,那么

1.父结点索引:(i-1)/2

2.左孩子索引:2*i+1

3.右孩子索引:2*i+2

那么我们就可以得到下面的重要规律:

对于大根堆:arr[i] >= arr[2i + 1] && arr[i] >= arr[2i + 2]

对于小根堆:arr[i] <= arr[2i + 1] && arr[i] <= arr[2i + 2]

二:堆排序的实现(手写代码)

2.1、基本思想:

1.首先将待排序的数组构造成一个大根堆,此时,整个数组的最大值就是堆结构的顶端

2.将顶端的数与末尾的数交换,此时,末尾的数为最大值,剩余待排序数组个数为n-1

3.将剩余的n-1个数再构造成大根堆,再将顶端数与n-1位置的数交换,如此反复执行,便能得到有序数组

2.2、代码实现-Java

    public static void heapSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = arr.length - 1; i >= 0; i--) {
			heapify(arr, i, arr.length);
		}
		int heapSize = arr.length;
		swap(arr, 0, --heapSize);
		while (heapSize > 0) { 
			heapify(arr, 0, heapSize); 
			swap(arr, 0, --heapSize); 
		}
	}
	
	// arr[index]位置的数,能否往下移动
	public static void heapify(int[] arr, int index, int heapSize) {
		int left = index * 2 + 1; // 左孩子的下标
		while (left < heapSize) { // 下方还有孩子的时候
			// 两个孩子中,谁的值大,把下标给largest
			// 1)只有左孩子,left -> largest
			// 2) 同时有左孩子和右孩子,右孩子的值<= 左孩子的值,left -> largest
			// 3) 同时有左孩子和右孩子并且右孩子的值> 左孩子的值, right -> largest
			int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
			// 父和较大的孩子之间,谁的值大,把下标给largest
			largest = arr[largest] > arr[index] ? largest : index;
			if (largest == index) {
				break;
			}
			swap(arr, largest, index);
			index = largest;
			left = index * 2 + 1;
		}
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

测试

    public static void main(String[] args) {
        int[] arr = {9,2,3,5,2,1};
        int[] ints = heapSort(arr);
        for (int i = 0 ; i<ints.length; i++){
            System.out.println(ints[i]);
        }
    }

在这里插入图片描述

三:优先级队列(系统堆结构)

Java中也有堆结构的具体实现,是优先级队列PriorityQueue,它的底层就是堆结构的实现,而且默认构建的是小根堆

        //默认是小根堆
        PriorityQueue<Integer> heap = new PriorityQueue<>();
        heap.add(5);
        heap.add(1);
        heap.add(3);
        heap.add(8);
        heap.add(6);
        heap.add(1);
        heap.add(3);

        while (!heap.isEmpty()){
            System.out.println(heap.poll());
        }

在这里插入图片描述
使用比较器可以改变它的默认构造方式,将它变成大根堆

    public static class MyCom implements Comparator<Integer> {

        @Override
        public int compare(Integer o1, Integer o2) {
            return o2 - o1;
        }
    }
    
    PriorityQueue<Integer> heap = new PriorityQueue<>(new MyCom());

四:系统堆结构 VS 手写堆结构

看到这里可能有同学会想了:
既然系统已经给我们提供了堆结构的API,而且使用比较器也可以很方便的改变比较方式。
那么我们为什么还要手写堆结构来进行排序呢??

原因就在于,系统提供的API不能实现动态改信息的需求。
1)系统提供的堆结构,如果动态的改变数据,它就不能保证结构依然有序。

2)手写的堆结构,因为增加了对象的位置表,所以能够满足动态改信息的需求。

下面举个例子,把六个学生按照年龄有小到大的顺序排序
在这里插入图片描述
在这里插入图片描述
结果:
在这里插入图片描述
很显然无序

为什么,手写的堆结构就不会发生这种问题呢?
原因就在于,系统的堆结构没有反向表HashMap(HashMap<T, Integer> indexMap; 任何你给我的数据样本,反向表都记录着该数据样本在堆上的具体位置),当样本的数据发生动态变化时,系统的堆结构不能够准确的找到该数据样本的位置,从而在数据改变后不能再继续进行堆排序,所以就会造成排序混乱。

但是手写的堆结构,因为我们是用数组进行实现的,所以我们清楚的记录着每个数据样本的位置,所以在数据改变后,我们依然能够找到这个数据并再继续进行堆排序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小本科生debug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值