CF506C Mr. Kitayuta vs. Bamboos

CF506C

n n n个竹子,一开始的高度为 h i h_i hi,每天末尾生长 a i a_i ai

m m m天,每天中间你可以选择 k k k棵竹子(可以重复选),使得它们的高度减 p p p,如果减到负数就变为 0 0 0,但是这个竹子没有消失。

求第 m m m天末最高的竹子最矮多少。

n ≤ 1 0 5 n\le 10^5 n105


巧妙的转化。

显然二分答案,转化成判定性问题。我们需要找到一种方案满足最终所有的竹子的高度都小于等于 m i d mid mid

如何判定?这里用了个奇妙的转化:如果将时间倒流,就可以视为,每过一天,竹子会缩短 a i a_i ai,砍竹子视为将竹子拉高 p p p,中间不可以出现负数,最终所有的竹子的高度都为 h i h_i hi

既然二分了,那就放缩一下:一开始所有竹子的高度为 m i d mid mid,要求最终的高度大于等于 h i h_i hi

这样转化的好处时:砍竹子的操作无限制,每次一定砍 p p p

于是按照时间从后往前枚举,计算每个竹子缩多少次就会变为负数,如果这个次数小于等于 m m m,就丢进小根堆里。每次取堆顶进行操作。最后再用剩下的操作次数将竹子的高度调到 h i h_i hi上即可。


using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
#define ll long long
int n,m,k;
ll p;
ll h[N],a[N];
ll s[N];
int q[N],nq;
bool cmpq(int x,int y){return s[x]/a[x]>s[y]/a[y];}
bool ok(ll lim){
	nq=0;
	for (int i=1;i<=n;++i){
		s[i]=lim;
		if (s[i]/a[i]+1<=m)
			q[nq++]=i;
	}
	make_heap(q,q+nq,cmpq);
	ll rem=k*m;
	for (int i=1;i<=m && nq;++i){
		for (int j=1;j<=k && nq;++j){
			rem--;
			int x=q[0];
			pop_heap(q,q+nq--,cmpq);
			if (s[x]-i*a[x]<0) return 0;
			s[x]+=p;
			if (s[x]/a[x]+1<=m){
				q[nq++]=x;
				push_heap(q,q+nq,cmpq);
			}
		}
	}
	if (nq) return 0;
	for (int i=1;i<=n;++i){
		s[i]-=a[i]*m;
		if (s[i]>=h[i]) continue;
		ll tmp=(h[i]-s[i]-1)/p+1;
		rem-=tmp;
		if (rem<0) return 0;
	}
	return 1;
}
int main(){
	scanf("%d%d%d%lld",&n,&m,&k,&p);
	for (int i=1;i<=n;++i)
		scanf("%lld%lld",&h[i],&a[i]);
	ll l=0,r=1e18;
	while (l<r){
		ll mid=l+r>>1;
		if (ok(mid))
			r=mid;
		else
			l=mid+1;
	}
	ok(0);
	printf("%lld\n",r);
	return 0;
}
飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新和实践能力,尤其是在嵌入式系统、自动控制和机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向和位置。 数据采集与滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波和滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包含电机速度和方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器和串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序和主循环等。理解和优化这一架构对于提升整体性能至关重要。 调试与优化:程序能够在比赛中取得好成绩,说明经过了反复的调试和优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别和解决。 团队协作与版本控制:在项目开发过程中,团队协作和版本控制工具(如Git)的应用不可或缺,能够保
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环和电流环两个闭环,系统能够对电机的转速和电流进行精准控制,从而提升动态响应能力和稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性和效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路和脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)和电流调节器(ACR),分别对转速和电流进行调控。检测电路用于采集实际转速和电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性和性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路和脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路和稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性和有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路和控制器设计等多个环节,通过仿
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值