题目传送-Luogu2579
题目传送-BZOJ1898
题意:
有一个无向图。
有许多条鱼在若干个点之间循环出现,循环节长度小于等于\(4\)
要求从\(A\)花费\(K\)个单位时间到达\(B\),中途不能和鱼相碰,问有多少方案。
\(n\le50,K \le 2000000000\)
题解:
这个循环节长度太小了,它们的\(lcm\)只有\(12\)
意味着只有12张不同的图
我们以12为一单位跑矩阵快速幂就行了
最后几幅图暴力
过程:
乘法的时候一不小心乘反了
代码:
const int N=60,U=12;
const int P=10000;
int n,m,s,S,T,K;
struct MAT {
int mat[N][N];
inline void clear() {
mem(mat,0);
}
inline void print() {
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++)
printf("%d ",mat[i][j]);
puts("");
}puts("");
}
inline MAT operator * (const MAT &a)const {
MAT c; c.clear();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++) {
c.mat[i][j]+=mat[i][k]*a.mat[k][j]%P;
if(c.mat[i][j]>=P) c.mat[i][j]-=P;
}
return c;
}
}unit,u,ma[12],st,trans,ans;
inline MAT Pow(MAT x,int y) {
MAT ret=unit;
for(;y;y>>=1,x=x*x)
if(y&1) ret=ret*x;
return ret;
}
signed main() {
// freopen("2.in","r",stdin);
// freopen("my.out","w",stdout);
read(n); read(m); read(S); read(T); read(K); ++S; ++T;
for(int i=1;i<=n;i++) unit.mat[i][i]=1;
for(int i=1;i<=m;i++) {
int x,y; read(x); read(y); ++x; ++y;
u.mat[x][y]=u.mat[y][x]=1;
}
for(int i=0;i<12;i++) ma[i]=u;
read(s);
for(int i=1;i<=s;i++) {
int loop; read(loop);
for(int j=0;j<loop;j++) {
int x; read(x); ++x;
for(int k=j;k<12;k+=loop) {
for(int p=1;p<=n;p++)
ma[k].mat[p][x]=0;
}
}
}
// printf("%d\n",(ma[1]*ma[2]*ma[3]).mat[S][T]);
// for(int i=0;i<4;i++) ma[i].print();
for(int i=2;i<12;i++) ma[i]=ma[i-1]*ma[i]; ma[0]=ma[11]*ma[0];
int t=K/12,mod=K%12;
if(mod==0) st=unit;
else st=ma[mod];
trans=Pow(ma[0],t);
// ma[1].print();
// st.print(); trans.print();
ans=trans*st;
printf("%d\n",ans.mat[S][T]);
return 0;
}
/*
20 19 1 15 20
3 14
17 16
7 10
0 2
17 19
12 15
5 7
19 8
19 12
8 0
14 10
14 13
17 6
1 3
3 15
11 17
9 15
9 0
16 15
15
3 12 15 18
4 9 10 11 12
3 16 13 6
2 19 16
3 15 10 5
4 2 0 15 11
2 0 8
3 9 5 0
3 0 4 8
2 8 4
3 7 16 6
2 3 7
4 7 19 8 2
4 3 5 12 18
2 9 13
*/
用时:1h