二分查找(折半查找)简介与代码实现
1.简介
二分查找的本质:
首先确定待查元素所在的范围,然后逐步缩小范围(区间),直到查找到元素或者查找失败为止。
二分查找的前提:
数组必须是有序的
2.代码实现(C++)
2.1.写法一(target在左闭右闭区间)
1.因为left与right相等的情况在[left,right]区间有意义,所以在while(left <= right)中要使用<=
2.如果nums[middle]大于target,则更新搜索范围右下标right为middle - 1。因为接下来要查找的左区间结束下标的位置是middle - 1。
//版本一
class Solution1 {
public:
int search(vector<int>& nums, int target) {
int left = 0;
//定义target在左闭右闭的区间,即[left,right]
int right = nums.size() - 1;
//当left==right时,[left,right]区间依然有效,所以使用<=
while (left <= right) {
//防止溢出,等同于(left+right)/2
int middle = left + ((right - left) / 2);
if (nums[middle] > target) {
right = middle - 1;//target在左区间[left,middle-1]
}
else if (nums[middle] < target) {
left = middle + 1;//target在右区间[middle+1,right]
}
else {//nums[middle]==target
return middle;//在数组中找到目标值,直接返回下标
}
}
//未找到目标值
return -1;
}
};
2.2.写法二(target在左闭右开区间)
1.因为left与right相等的情况在[left,right]区间没有意义,所以在while(left < right)中要使用<
2.如果nums[middle] 大于 target ,则 right 更新为 nums[middle]
//版本二
class Solution2 {
public:
int search(vector<int>& nums, int target) {
int left = 0;
//定义target在左闭右开的区间,即[left,right)
int right = nums.size();
//当left==right时,[left,right),是无效空间,所以使用<
while (left < right) {
//防止溢出,等同于(left+right)/2
int middle = left + ((right - left) >> 1 );
if (nums[middle] > target) {
right = middle;//target在左区间[left,middle)
}
else if (nums[middle] < target) {
left = middle + 1;//target在右区间[middle+1,right)
}
else {//nums[middle]==target
return middle;//在数组中找到目标值,直接返回下标
}
}
//未找到目标值
return -1;
}
};
3.代码检验
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
//版本一
class Solution1 {
public:
int search(vector<int>& nums, int target) {
int left = 0;
//定义target在左闭右闭的区间,即[left,right]
int right = nums.size() - 1;
//当left==right时,[left,right]区间依然有效,所以使用<=
while (left <= right) {
//防止溢出,等同于(left+right)/2
int middle = left + ((right - left) / 2);
if (nums[middle] > target) {
right = middle - 1;//target在左区间[left,middle-1]
}
else if (nums[middle] < target) {
left = middle + 1;//target在右区间[middle+1,right]
}
else {//nums[middle]==target
return middle;//在数组中找到目标值,直接返回下标
}
}
//未找到目标值
return -1;
}
};
//版本二
class Solution2 {
public:
int search(vector<int>& nums, int target) {
int left = 0;
//定义target在左闭右开的区间,即[left,right)
int right = nums.size();
//当left==right时,[left,right),是无效空间,所以使用<
while (left < right) {
//防止溢出,等同于(left+right)/2
int middle = left + ((right - left) >> 1 );
if (nums[middle] > target) {
right = middle;//target在左区间[left,middle)
}
else if (nums[middle] < target) {
left = middle + 1;//target在右区间[middle+1,right)
}
else {//nums[middle]==target
return middle;//在数组中找到目标值,直接返回下标
}
}
//未找到目标值
return -1;
}
};
int main() {
//创建数组
vector<int>arr;
//为数组添加元素
cout << "查找temp最后被赋值的元素在排序后的数组中的位置" << endl;
cout << "添加到数组内的元素:" << endl;
int temp = 0;//查找temp最后被赋值的元素在排序后的数组中的位置
for (int i = 0; i < 10; i++) {
temp = rand() % 101;
arr.push_back(temp);
cout << temp << " ";
}
cout << endl;
//为数组排序
sort(arr.begin(), arr.end());
cout << "输出排序后的数组" << endl;
for (int i = 0; i < arr.size(); i++) {
cout << arr.at(i) << " ";
}
cout << endl;
//分别使用两种二分查找,查找temp最后被赋值的元素在排序后的数组中的位置
Solution1 S1;
Solution2 S2;
cout << "使用方法一,目标值的下标为:" << endl << S1.search(arr, temp) << endl;
cout << "使用方法二,目标值的下标为:" << endl << S1.search(arr, temp) << endl;
}
运行截图: