二分查找(折半查找)简介与代码实现(C++)

1.简介

二分查找的本质:

首先确定待查元素所在的范围,然后逐步缩小范围(区间),直到查找到元素或者查找失败为止。

二分查找的前提:

数组必须是有序的

2.代码实现(C++)

2.1.写法一(target在左闭右闭区间)

在这里插入图片描述

1.因为left与right相等的情况在[left,right]区间有意义,所以在while(left <= right)中要使用<=
2.如果nums[middle]大于target,则更新搜索范围右下标right为middle - 1。因为接下来要查找的左区间结束下标的位置是middle - 1。
//版本一
class Solution1 {
public:
	int search(vector<int>& nums, int target) {
		int left = 0;
		//定义target在左闭右闭的区间,即[left,right]
		int right = nums.size() - 1;
		//当left==right时,[left,right]区间依然有效,所以使用<=
		while (left <= right) {
			//防止溢出,等同于(left+right)/2
			int middle = left + ((right - left) / 2);
			if (nums[middle] > target) {
				right = middle - 1;//target在左区间[left,middle-1]
			}
			else if (nums[middle] < target) {
				left = middle + 1;//target在右区间[middle+1,right]
			}
			else {//nums[middle]==target
				return middle;//在数组中找到目标值,直接返回下标
			}
		}
		//未找到目标值
		return -1;
	}
};

2.2.写法二(target在左闭右开区间)

在这里插入图片描述

1.因为left与right相等的情况在[left,right]区间没有意义,所以在while(left < right)中要使用<
2.如果nums[middle] 大于 target ,则 right 更新为 nums[middle]
//版本二
class Solution2 {
public:
	int search(vector<int>& nums, int target) {
		int left = 0;
		//定义target在左闭右开的区间,即[left,right)
		int right = nums.size();
		//当left==right时,[left,right),是无效空间,所以使用<
		while (left < right) {
			//防止溢出,等同于(left+right)/2
			int middle = left + ((right - left) >> 1 );
			if (nums[middle] > target) {
				right = middle;//target在左区间[left,middle)
			}
			else if (nums[middle] < target) {
				left = middle + 1;//target在右区间[middle+1,right)
			}
			else {//nums[middle]==target
				return middle;//在数组中找到目标值,直接返回下标
			}
		}
		//未找到目标值
		return -1;
	}
};

3.代码检验

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

//版本一
class Solution1 {
public:
	int search(vector<int>& nums, int target) {
		int left = 0;
		//定义target在左闭右闭的区间,即[left,right]
		int right = nums.size() - 1;
		//当left==right时,[left,right]区间依然有效,所以使用<=
		while (left <= right) {
			//防止溢出,等同于(left+right)/2
			int middle = left + ((right - left) / 2);
			if (nums[middle] > target) {
				right = middle - 1;//target在左区间[left,middle-1]
			}
			else if (nums[middle] < target) {
				left = middle + 1;//target在右区间[middle+1,right]
			}
			else {//nums[middle]==target
				return middle;//在数组中找到目标值,直接返回下标
			}
		}
		//未找到目标值
		return -1;
	}
};


//版本二
class Solution2 {
public:
	int search(vector<int>& nums, int target) {
		int left = 0;
		//定义target在左闭右开的区间,即[left,right)
		int right = nums.size();
		//当left==right时,[left,right),是无效空间,所以使用<
		while (left < right) {
			//防止溢出,等同于(left+right)/2
			int middle = left + ((right - left) >> 1 );
			if (nums[middle] > target) {
				right = middle;//target在左区间[left,middle)
			}
			else if (nums[middle] < target) {
				left = middle + 1;//target在右区间[middle+1,right)
			}
			else {//nums[middle]==target
				return middle;//在数组中找到目标值,直接返回下标
			}
		}
		//未找到目标值
		return -1;
	}
};


int main() {

	//创建数组
	vector<int>arr;
	//为数组添加元素
	cout << "查找temp最后被赋值的元素在排序后的数组中的位置" << endl;
	cout << "添加到数组内的元素:" << endl;
	int temp = 0;//查找temp最后被赋值的元素在排序后的数组中的位置
	for (int i = 0; i < 10; i++) {
		temp = rand() % 101;
		arr.push_back(temp);
		cout << temp << " ";
	}
	cout << endl;
	//为数组排序
	sort(arr.begin(), arr.end());
	cout << "输出排序后的数组" << endl;
	for (int i = 0; i < arr.size(); i++) {
		cout << arr.at(i) << " ";
	}
	cout << endl;
	//分别使用两种二分查找,查找temp最后被赋值的元素在排序后的数组中的位置
	Solution1 S1;
	Solution2 S2;
	cout << "使用方法一,目标值的下标为:" << endl << S1.search(arr, temp) << endl;
	cout << "使用方法二,目标值的下标为:" << endl << S1.search(arr, temp) << endl;
	
}

运行截图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GT-一二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值