K邻近算法(kNeighbrClassifier/KNN):原理为 欧几里得距离+最近+投票(权重)+概率
根据距离的远近进行分类
欧几里得距离:多维空间中各点之间的距离
缺点:时间复杂度和空间复杂度较大
注意:当训练样本数据少的时候,样本比例一定要相同;训练的数据不能是string
KNN算法分类电影
import numpy
import pandas #导入Excel文件
from sklearn.neighbors import KNeighborsClassifier #机器学习算法库,没有深度学习算法
movie=pandas.read_excel(r"D:\Python\代码\Machine-Learn\1-KNN\data\movie.xlsx",sheet_name=0)
movie
电影名称 | 武打镜头 | 接吻镜头 | 分类情况 | |
---|---|---|---|---|
0 | 大话西游 | 36 | 1 | 动作片 |
1 | 杀破狼 | 43 | 2 | 动作片 |
2 | 前任3 | 0 | 10 | 爱情片 |
3 | 战狼2 | 59 | 1 | 动作片 |
4 | 泰坦尼克号 | 1 | 15 | 爱情片 |
5 | 新余心愿 | 2 | 19 | 爱情片 |
movie=pandas.read_excel(r"D:\Python\代码\Machine-Learn\1-KNN\data\movie.xlsx",sheet_name=0)
x=movie[["武打镜头","接吻镜头"]] #取出训练数据中的训练数据
y=movie["分类情况"] #取出目标值
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(x,y) #训练数据
#预测电影《飞车》武打镜头50,接吻镜头2
x_text=pandas.DataFrame({"武打镜头":[50,3],"接吻镜头":[2,50]})
x_text
武打镜头 | 接吻镜头 | |
---|---|---|
0 | 50 | 2 |
1 | 3 | 50 |
get_result=knn.predict(x_text)
get_proba=knn.predict_proba(x_text)
print("概率:{}".format(get_proba))
print("分类结果:{}".format(get_result))
概率:[[0.6 0.4]
[0.4 0.6]]
分类结果:['动作片' '爱情片']
电影分类运行原理
s=((movie["武打镜头"]-50)**2+(movie["接吻镜头"]-2)**2)**0.5 #根据knn算法求距离
index=s.sort_values().index #先将数据排序然后取出索引
fljg=movie["分类情况"][index[:5]]
print("\n{}".format(index),"\n分类:\n{}".format(fljg))
Int64Index([1, 3, 0, 2, 4, 5], dtype='int64')
分类:
1 动作片
3 动作片
0 动作片
2 爱情片
4 爱情片
Name: 分类情况, dtype: object
识别梵文
import numpy
import os
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
img=plt.imread(r"D:\Python\代码\Machine-Learn\1-KNN\data\手写字母测试与训练\梵文识别学习\Test\character_1_ka\1339.png")
plt.imshow(img,cmap=plt.cm.gray)
<matplotlib.image.AxesImage at 0x1af31dcc048>
#将读取的图片保存到数组data中
def img_read(dir_name,data):
for filename in os.listdir(dir_name):
img=plt.imread(dir_name+"\"+filename)
data.append(img)
def readTain(): #获取训练数据
data=[]
dir_path=r"D:\Python\代码\Machine-Learn\1-KNN\data\手写字母测试与训练\梵文识别学习\Train"
for dir_name in os.listdir(dir_path)[36:]:
dir_name=dir_path+"\"+dir_name
img_read(dir_name,data)
return data
def readTest(): #获取测试数据
data_test=[]
dir_test_path=r"D:\Python\代码\Machine-Learn\1-KNN\data\手写字母测试与训练\梵文识别学习\Test"
for dir_name in os.listdir(dir_test_path)[36:]:
dir_name=dir_test_path+"\"+dir_name
img_read(dir_name,data_test)
return data_test
x=readTain() #训练数据
train_x=numpy.array(x)
train_x_shape={}
train_x_shape["图片数量"]=test_x.shape[0]
train_x_shape["宽度"]=str(test_x.shape[1])+"px"
train_x_shape["高度"]=str(test_x.shape[2])+"px"
train_x_shape
{'图片数量': 3000, '宽度': '32px', '高度': '32px'}
x=readTest() #测试数据
ndarray_x=numpy.array(x)
# 随机抽样测试数据
index=numpy.random.randint(0,3000,size=1000)
test_x=ndarray_x[index]
test_x_shape={}
test_x_shape["图片数量"]=test_x.shape[0]
test_x_shape["宽度"]=str(test_x.shape[1])+"px"
test_x_shape["高度"]=str(test_x.shape[2])+"px"
test_x_shape
{'图片数量': 1000, '宽度': '32px', '高度': '32px'}
# 对应的数字
num=[0,1,2,3,4,5,6,7,8,9]*300
test_y=numpy.array(num)
test_y.sort()
test_y=test_y[index]
test_y
array([0, 9, 8, 0, 3, 3, 0, 6, 6, 2, 1, 0, 2, 9, 0, 5, 5, 1, 7, 3, 1, 9,
7, 3, 0, 8, 8, 4, 0, 5, 7, 7, 4, 3, 3, 1, 8, 2, 6, 1, 5, 0, 8, 6,
0, 2, 7, 4, 3, 1, 9, 8, 9, 4, 2, 7, 5, 3, 0, 5, 9, 4, 1, 8, 5, 7,
6, 5, 0, 9, 9, 1, 4, 9, 9, 5, 2, 6, 4, 6, 2, 2, 2, 6, 7, 7, 4, 3,
8, 7, 2, 5, 4, 2, 6, 0, 9, 9, 5, 8, 4, 3, 7, 5, 0, 1, 5, 7, 1, 3,
3, 9, 5, 8, 6, 6, 7, 5, 6, 5, 1, 6, 0, 3, 6, 3, 5, 3, 4, 5, 8, 9,
7, 2, 3, 9, 5, 6, 6, 0, 3, 2, 3, 5, 8, 8, 8, 2, 3, 0, 7, 9, 6, 0,
9, 8, 8, 6, 6, 6, 9, 2, 8, 6, 6, 7, 4, 6, 1, 7, 2, 4, 2, 6, 6, 7,
9, 4, 9, 0, 7, 6, 6, 7, 9, 9, 5, 3, 1, 1, 8, 1, 0, 6, 6, 3, 5, 4,
7, 3, 3, 5, 0, 3, 1, 9, 2, 9, 7, 0, 6, 1, 2, 6, 4, 2, 3, 0, 4, 3,
4, 9, 2, 6, 8, 4, 2, 1, 5, 1, 0, 7, 9, 2, 4, 8, 4, 4, 5, 0, 4, 1,
1, 5, 0, 4, 4, 7, 4, 1, 2, 1, 0, 1, 2, 5, 6, 6, 1, 7, 6, 7, 6, 5,
0, 2, 4, 8, 7, 7, 9, 8, 1, 7, 9, 8, 5, 0, 2, 9, 7, 8, 2, 0, 5, 4,
3, 3, 6, 1, 4, 5, 9, 9, 5, 4, 0, 9, 9, 4, 3, 9, 8, 2, 3, 5, 6, 4,
8, 5, 0, 2, 6, 5, 5, 7, 2, 1, 8, 6, 4, 7, 9, 7, 2, 6, 4, 4, 3, 9,
5, 4, 4, 0, 5, 1, 5, 8, 9, 6, 5, 3, 2, 3, 4, 1, 6, 0, 0, 8, 1, 3,
0, 4, 0, 6, 5, 9, 0, 8, 7, 5, 4, 2, 0, 3, 8, 4, 3, 2, 0, 5, 0, 8,
3, 1, 2, 5, 6, 3, 6, 0, 5, 9, 9, 8, 2, 3, 2, 1, 4, 6, 1, 7, 9, 2,
1, 5, 4, 1, 3, 3, 9, 5, 1, 4, 0, 1, 7, 2, 4, 3, 4, 0, 0, 0, 3, 5,
0, 4, 3, 5, 3, 0, 7, 7, 5, 1, 7, 2, 5, 8, 0, 0, 5, 1, 9, 5, 8, 8,
5, 4, 9, 7, 4, 2, 9, 2, 9, 5, 8, 8, 4, 9, 7, 1, 5, 1, 1, 0, 6, 9,
1, 6, 3, 3, 7, 1, 6, 0, 7, 8, 7, 3, 6, 7, 9, 1, 1, 1, 8, 8, 8, 9,
1, 4, 5, 1, 0, 7, 3, 2, 9, 3, 7, 7, 1, 7, 6, 8, 3, 8, 3, 0, 4, 3,
1, 0, 3, 3, 2, 5, 6, 6, 6, 2, 9, 4, 6, 3, 7, 6, 1, 8, 8, 4, 2, 6,
3, 7, 8, 0, 6, 4, 4, 9, 9, 2, 3, 5, 9, 2, 1, 4, 3, 9, 5, 8, 9, 5,
5, 2, 2, 7, 4, 5, 4, 6, 4, 0, 5, 9, 6, 4, 6, 9, 2, 0, 4, 6, 6, 7,
5, 8, 8, 8, 5, 8, 9, 0, 0, 3, 2, 7, 7, 3, 3, 4, 5, 2, 3, 3, 1, 0,
9, 1, 1, 8, 1, 3, 9, 8, 7, 1, 6, 9, 1, 7, 8, 4, 9, 5, 6, 4, 2, 3,
8, 3, 4, 8, 3, 8, 7, 5, 5, 0, 6, 2, 9, 8, 6, 6, 6, 5, 2, 9, 0, 1,
8, 1, 2, 6, 6, 6, 5, 4, 3, 2, 0, 6, 6, 3, 4, 5, 3, 8, 6, 4, 5, 4,
7, 6, 5, 4, 5, 8, 9, 4, 5, 5, 2, 5, 1, 5, 6, 4, 4, 1, 4, 1, 9, 8,
8, 7, 1, 9, 3, 5, 2, 5, 8, 0, 2, 7, 2, 2, 7, 5, 8, 0, 6, 0, 7, 0,
4, 2, 8, 6, 3, 3, 3, 8, 3, 6, 7, 5, 3, 9, 3, 8, 5, 8, 6, 2, 2, 0,
1, 9, 2, 6, 2, 8, 6, 0, 7, 0, 3, 4, 9, 4, 1, 2, 2, 3, 5, 5, 7, 9,
9, 7, 0, 6, 5, 8, 3, 1, 6, 8, 4, 1, 6, 7, 3, 9, 5, 1, 4, 5, 7, 1,
0, 5, 9, 4, 9, 5, 3, 6, 2, 2, 2, 3, 9, 0, 0, 2, 3, 2, 9, 9, 1, 8,
4, 7, 1, 1, 2, 4, 3, 4, 9, 7, 4, 7, 8, 6, 0, 4, 8, 7, 0, 6, 0, 5,
4, 0, 9, 7, 2, 9, 4, 0, 3, 0, 8, 4, 3, 5, 4, 5, 2, 2, 2, 7, 9, 0,
7, 2, 1, 5, 3, 6, 5, 3, 3, 1, 3, 4, 6, 4, 1, 5, 7, 7, 0, 7, 0, 3,
1, 2, 2, 3, 6, 1, 8, 3, 9, 5, 9, 7, 7, 8, 4, 3, 0, 1, 5, 1, 7, 5,
8, 5, 8, 5, 1, 7, 4, 8, 0, 2, 8, 8, 3, 2, 8, 6, 2, 1, 0, 2, 7, 3,
4, 2, 6, 3, 3, 9, 9, 1, 8, 9, 7, 4, 9, 8, 4, 4, 7, 0, 7, 0, 2, 0,
0, 2, 8, 7, 3, 6, 6, 2, 4, 2, 0, 4, 9, 0, 4, 3, 7, 5, 7, 7, 2, 6,
9, 3, 1, 0, 4, 1, 7, 8, 4, 5, 1, 4, 1, 0, 9, 3, 9, 3, 7, 1, 9, 2,
0, 2, 5, 2, 9, 1, 6, 0, 2, 1, 8, 5, 0, 1, 8, 2, 0, 0, 8, 3, 1, 1,
9, 5, 9, 7, 5, 6, 5, 7, 1, 1])
# 对应的数字
num=[0,1,2,3,4,5,6,7,8,9]*1700
train_y=numpy.array(num)
train_y.sort()
train_y
array([0, 0, 0, ..., 9, 9, 9])
# 将三维数据变为二维,fit训练数据不支持二维以上数据
train_x.reshape(17000,1024)
test_x.reshape(1000,1024)
array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]], dtype=float32)
# %%time
# 训练数据
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(train_x.reshape(17000,-1),train_y)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=5, p=2,
weights='uniform')
# %%time
# 获得结果
y_result=knn.predict(test_x.reshape(1000,1024))
print("预测结果:\n{}".format(y_result[500:700]),"\n实际结果:\n{}".format(test_y[500:700]))
预测结果:
[6 3 2 8 5 0 2 8 4 3 7 2 7 7 9 1 5 3 4 0 9 5 2 0 5 2 0 0 0 8 0 9 0 4 9 9 4
1 3 6 0 8 6 4 6 8 2 0 7 3 2 5 6 1 4 7 7 4 5 9 7 9 0 7 0 2 1 8 7 5 4 9 2 4
7 9 8 2 6 7 3 1 6 9 6 8 7 0 1 0 2 2 0 3 3 0 5 9 5 2 2 8 2 9 7 9 8 3 9 8 9
0 7 4 2 4 9 0 3 4 3 8 6 2 2 9 5 3 1 8 2 5 1 3 7 2 7 3 2 8 1 3 5 2 1 7 9 4
4 6 9 2 9 8 9 4 5 2 2 9 1 4 9 1 9 4 1 7 2 1 2 0 3 1 8 3 5 9 0 8 3 6 6 8 1
6 1 2 0 0 0 2 1 0 5 7 9 2 7 9]
实际结果:
[6 3 2 8 5 0 2 8 4 3 7 2 7 7 9 1 5 3 4 6 9 5 2 0 3 2 0 0 0 8 0 9 0 4 9 9 4
1 3 6 0 8 6 4 6 8 2 0 7 3 2 5 6 1 4 7 7 4 5 9 7 9 0 7 0 2 1 8 7 5 4 9 2 4
7 9 8 2 6 7 3 1 6 9 6 8 7 0 1 0 2 2 0 3 3 0 5 9 5 2 2 8 2 9 7 9 8 3 9 8 9
0 7 4 2 4 9 0 3 4 3 8 6 2 2 9 3 3 1 8 2 5 1 3 7 2 7 3 2 8 1 3 5 2 1 7 9 4
4 6 9 2 9 8 9 4 5 5 2 9 1 4 9 1 9 4 1 7 2 1 2 0 3 1 8 3 5 9 0 8 3 6 6 8 1
6 1 2 0 0 0 2 1 0 5 7 9 2 7 9]
# 准确率
acc=(test_y==y_result).mean()
print("准确率为:{}".format(acc))
准确率为:0.984
提高准确率
# 准确率与邻居数无关
knn=KNeighborsClassifier(n_neighbors=10)
knn.fit(train_x.reshape(17000,-1),train_y)
# score()方法既可以预测还可以求出准确率
knn.score(test_x.reshape(1000,1024),test_y)
0.974
# 改变权重为邻居数距离越近权重越高,距离越远权重越低;有的时候可以提高,有的时候不能提高
knn=KNeighborsClassifier(n_neighbors=5,weights="distance")
knn.fit(train_x.reshape(17000,-1),train_y)
# score()方法既可以预测还可以求出准确率
knn.score(test_x.reshape(1000,1024),test_y)
0.981
# p=1,使用曼哈顿距离为算法核心
# n_jobs是进程数,当=-1时,CPU有几个核就开启几个进程,提高运行速度
knn=KNeighborsClassifier(n_neighbors=5,weights="distance",n_jobs=-1)
knn.fit(train_x.reshape(17000,-1),train_y)
# score()方法既可以预测还可以求出准确率
knn.score(test_x.reshape(1000,1024),test_y)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓