Video Moment Retrieval 数据集整理

用于Video Moment Retrieval的数据集整理

  • 数据集的介绍

    • CharadesSTA

    CharadesSTA是在Charades上进行了时间标注,共一万余条视频,来自157种动作种类,在部分视频中,需要做结构化的复杂查询,即每个查询包含至少两个子句,并且查询片段时间跨度小于视频长度的一半。训练集共13898条,测试集4233条,其中复合句1378条。

    • 数据集论文:TALL: Temporal Activity Localization via Language Query https://arxiv.org/pdf/1705.02101.pdf

    • 数据集特征地址:https://prior.allenai.org/projects/charades

    • 数据集标注地址:https://github.com/jiyanggao/TALL

    • 视频样例:https://youtu.be/x9AhZLDkbyc

    • 标注样例:
      在这里插入图片描述

    • TACoS

      数据集种包含了基本烹饪的高分辨率视频记录,视频长度为1-23分钟(平均4.5分钟)。描述语料库中包含17,334个动作描述(符号),由146,771个单词(令牌)组成,其中75,210个是实词实例(例如:名词、动词和形容词)。动词的词汇包含28292个动词标记,实现435个词素。

      • 数据集官网: https://www.coli.uni-saarland.de/projects/smile/page.php?id=tacos

      • 数据集论文: https://aclanthology.org/Q13-1003.pdf

      • 数据集样例:
        在这里插入图片描述
        在这里插入图片描述

    • DiDeMo

      包括超过10,000个25-30秒长的个人视频和超过40,000个文本描述。

      • 数据集实例

        在这里插入图片描述

        在这里插入图片描述

  • 数据集的划分

  • 名称数据集论文划分备注
    ActivityNet Captionshttps://openaccess.thecvf.com/content_ICCV_2017/papers/Krishna_Dense-Captioning_Events_in_ICCV_2017_paper.pdfThe public split is used for our experiments, which has 37421, 17505, and 17031 video-sentence pairs for training, validation, and testing, respectively.划分的论文:https://aclanthology.org/D18-1015.pdf
    tacos https://aclanthology.org/Q13-1003.pdfWe split it in 50% for training, 25% for validation and 25% for test. ( The same split as in (Gao et al., 2017) is used, consisting of 10146, 4589, and 4083 video-sentence pairs for training, validation, and testing, respectively.)划分的论文里说和数据集论文划分一样:https://aclanthology.org/D18-1015.pdf
    Charades-STA.https://arxiv.org/pdf/1705.02101.pdfIn total, there are 17344 pairs of sentence and video clips. We split it in 50% for training, 25% for validation and 25% for test.划分就在数据集论文内
  • tacos 数据集的两种划分

    • import json
      with open("", "r") as f:
          data = f.read()
          data = json.loads(data)
          print(len(data))
      
    • https://github.com/JaywongWang/CBP/tree/master/datasets/tacos/raw_data

    • https://github.com/ikuinen/CMIN_moment_retrieval/tree/master/data/tacos

      • train 1604 s13-d21.avi - s27-d45.avi 10146条 text
      • test 722 s27-d50 - s32-d52. 4083 条text
      • val 964 s32-d55 - s37-d46 4589条text
    • https://github.com/microsoft/2D-TAN/tree/master/data/TACoS

    • https://github.com/IsaacChanghau/VSLNet/tree/master/data/dataset/tacos

    • https://github.com/yytzsy/SCDM/tree/master/data/TACOS/datasplit_info

    • import json
      with open("", "r") as f:
          data = f.read()
          data = json.loads(data)
          s = 0
          for key in data:
              for j in data[key]['sentences']:
                  s = s+1
          print(s)
      
      • train s17-d69.avi - s25-d52.avi 9790条text
      • test s30-d52 - s30-d29 4001条text
      • val s34-d28 - s36-d70 4436 条text
### starRC、LEF 和 DEF 文件的 EDA 工具使用教程 #### 关于 starRC 的使用说明 starRC 是由 Synopsys 开发的一款用于寄生参数提取 (PEX) 的工具,在 detail routing 完成之后被调用,以提供精确的电阻电容延迟分析数据[^2]。该工具能够处理复杂的多层互连结构并支持多种工艺节点。 对于 starRC 的具体操作指南,通常可以从官方文档获取最权威的信息。访问 Synopsys 官方网站的技术资源页面,可以找到最新的产品手册以及应用笔记等资料。此外,还可以通过在线帮助系统获得交互式的指导和支持服务。 #### LEF 和 DEF 文件格式解析及其在 Cadence 中的应用 LEF(Library Exchange Format)和 DEF(Design Exchange Format)是两种广泛应用于集成电路布局布线阶段的标准文件格式之一[^3]。前者主要用于描述标准单元库中的元件几何形状;后者则记录了整个芯片版图的设计信息,包括但不限于各个模块的位置关系、网络连接情况等重要细节。 当涉及到这些文件类型的编辑或读取时,Cadence 提供了一系列强大的平台级解决方案,比如 Virtuoso Layout Editor 就可以直接打开并修改 LEF/DEF 格式的项目工程。为了更好地理解和运用这两种文件格式,建议参阅 Cadence 发布的相关培训材料或是参加其举办的专项课程学习活动。 ```bash # 示例命令:查看 LEF 或 DEF 文件内容 cat my_design.lef cat my_design.def ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值