用于Video Moment Retrieval的数据集整理
-
数据集的介绍
- CharadesSTA
CharadesSTA是在Charades上进行了时间标注,共一万余条视频,来自157种动作种类,在部分视频中,需要做结构化的复杂查询,即每个查询包含至少两个子句,并且查询片段时间跨度小于视频长度的一半。训练集共13898条,测试集4233条,其中复合句1378条。
-
数据集论文:TALL: Temporal Activity Localization via Language Query https://arxiv.org/pdf/1705.02101.pdf
-
数据集特征地址:https://prior.allenai.org/projects/charades
-
数据集标注地址:https://github.com/jiyanggao/TALL
-
视频样例:https://youtu.be/x9AhZLDkbyc
-
标注样例:

-
TACoS
数据集种包含了基本烹饪的高分辨率视频记录,视频长度为1-23分钟(平均4.5分钟)。描述语料库中包含17,334个动作描述(符号),由146,771个单词(令牌)组成,其中75,210个是实词实例(例如:名词、动词和形容词)。动词的词汇包含28292个动词标记,实现435个词素。
-
数据集官网: https://www.coli.uni-saarland.de/projects/smile/page.php?id=tacos
-
数据集论文: https://aclanthology.org/Q13-1003.pdf
-
数据集样例:


-
-
DiDeMo
包括超过10,000个25-30秒长的个人视频和超过40,000个文本描述。
-
数据集实例


-
-
数据集的划分
-
名称 数据集论文 划分 备注 ActivityNet Captions https://openaccess.thecvf.com/content_ICCV_2017/papers/Krishna_Dense-Captioning_Events_in_ICCV_2017_paper.pdf The public split is used for our experiments, which has 37421, 17505, and 17031 video-sentence pairs for training, validation, and testing, respectively. 划分的论文:https://aclanthology.org/D18-1015.pdf tacos https://aclanthology.org/Q13-1003.pdf We split it in 50% for training, 25% for validation and 25% for test. ( The same split as in (Gao et al., 2017) is used, consisting of 10146, 4589, and 4083 video-sentence pairs for training, validation, and testing, respectively.) 划分的论文里说和数据集论文划分一样:https://aclanthology.org/D18-1015.pdf Charades-STA. https://arxiv.org/pdf/1705.02101.pdf In total, there are 17344 pairs of sentence and video clips. We split it in 50% for training, 25% for validation and 25% for test. 划分就在数据集论文内 -
tacos 数据集的两种划分
-
import json with open("", "r") as f: data = f.read() data = json.loads(data) print(len(data)) -
https://github.com/JaywongWang/CBP/tree/master/datasets/tacos/raw_data
-
https://github.com/ikuinen/CMIN_moment_retrieval/tree/master/data/tacos
- train 1604 s13-d21.avi - s27-d45.avi 10146条 text
- test 722 s27-d50 - s32-d52. 4083 条text
- val 964 s32-d55 - s37-d46 4589条text
-
https://github.com/microsoft/2D-TAN/tree/master/data/TACoS
-
https://github.com/IsaacChanghau/VSLNet/tree/master/data/dataset/tacos
-
https://github.com/yytzsy/SCDM/tree/master/data/TACOS/datasplit_info
-
import json with open("", "r") as f: data = f.read() data = json.loads(data) s = 0 for key in data: for j in data[key]['sentences']: s = s+1 print(s)- train s17-d69.avi - s25-d52.avi 9790条text
- test s30-d52 - s30-d29 4001条text
- val s34-d28 - s36-d70 4436 条text
-

393

被折叠的 条评论
为什么被折叠?



