> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。> 目标:了解什么是记忆化搜索,并且掌握记忆化搜索算法。
> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!
> 专栏选自:动态规划算法_დ旧言~的博客-CSDN博客
> 望小伙伴们点赞👍收藏✨加关注哟💕💕
一、算法讲解
动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法:
- 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
- 与分治法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上)。
【Tips】动态规划算法解决问题的分类
- 计数:有多少种方式走到右下角 / 有多少种方法选出k个数使得和是 sum。
- 求最大值/最小值:从左上角走到右下角路径的最大数字和最长上升子序列长度。
- 求存在性:取石子游戏,先手是否必胜 / 能不能取出 k 个数字使得和是 sum。
【Tips】动态规划dp算法一般步骤
- 确定状态表示(dp[ i ] 的含义是什么,来源:1、题目要求;2、经验+题目要求;3、分析问题时发现重复子问题)
- 状态转移方程(可求得 dp[ i ] 的数学公式,来源:题目要求+状态表示)
- 初始化(dp 表中特别的初始值,保证填 dp 表时不会越界,来源:题目要求+状态表示)
- 填表顺序(根据状态转移方程修改 dp[ i ] 的方式,来源:题目要求+状态表示)
- 返回值(题目求解的结果,来源:题目要求+状态表示)
二、算法习题
2.1 第一题
题目描述:
算法思路:
1. 状态表⽰:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移⽅程:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
- 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
- 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
- 由于我们要求的是有多少种⽅法,因此状态转移⽅程就呼之欲出了: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- 「下标的映射关系」。
- 在本题中,「添加⼀⾏」,并且「添加⼀列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候
「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回 dp[m][n] 的值。
代码呈现:
class Solution {
public:
int uniquePaths(int m, int n)
{
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0)); // 创建⼀个 dp表
dp[0][1] = 1; // 初始化
// 填表
for (int i = 1; i <= m; i++) // 从上往下
for (int j = 1; j <= n; j++) // 从左往右
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
// 返回结果
return dp[m][n];
}
};
2.2 第二题
题目描述:
算法思路:
本题为不同路径的变型,只不过有些地⽅有「障碍物」,只要在「状态转移」上稍加修改就可解决。
1. 状态表⽰:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
- 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
- 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
但是, [i - 1, j] 与 [i, j - 1] 位置都是可能有障碍的,此时从上⾯或者左边是不可能到达 [i, j] 位置的,也就是说,此时的⽅法数应该是 0。由此我们可以得出⼀个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- 「下标的映射关系」。
- 在本题中,添加⼀⾏,并且添加⼀列后,只需将 dp[1][0] 的位置初始化为 1 即可。
4. 填表顺序:
根据「状态转移」的推导,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n] 。
代码呈现:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& ob)
{
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回值
int m = ob.size(), n = ob[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
dp[1][0] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (ob[i - 1][j - 1] == 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return dp[m][n];
}
};
2.3 第三题
题目描述:
算法思路:
1. 状态表⽰:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,此时的最⼤价值。
2. 状态转移⽅程:
对于 dp[i][j] ,我们发现想要到达 [i, j] 位置,有两种⽅式:
- 从 [i, j] 位置的上⽅ [i - 1, j] 位置,向下⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为 dp[i - 1][j] + grid[i][j] ;
- 从 [i, j] 位置的左边 [i, j - 1] 位置,向右⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为 dp[i][j - 1] + grid[i][j]
- 我们要的是最⼤值,因此状态转移⽅程为:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- 「下标的映射关系」。
- 在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有的值都为 0 即可。
4. 填表顺序:
根据「状态转移⽅程」,填表的顺序是「从上往下填写每⼀⾏」,「每⼀⾏从左往右」。
5. 返回值:
根据「状态表⽰」,我们应该返回 dp[m][n] 的值。
代码呈现:
class Solution {
public:
int jewelleryValue(vector<vector<int>>& grid)
{
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回结果
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
return dp[m][n];
}
};
2.4 第四题
题目描述:
算法思路:
关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。⽐较难的地⽅可能就是对于「边界条件」的处理。
1. 状态表⽰:
dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。
2. 状态转移⽅程:
对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
- 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
- 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
- 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;
我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。
于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +1])) + matrix[i][j] 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- 「下标的映射关系」。
在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏
初始化为 0 即可。
4. 填表顺序:
根据「状态表⽰」,填表的顺序是「从上往下」。
代码呈现:
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix)
{
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回结果
int n = matrix.size();
vector<vector<int>> dp(n + 1, vector<int>(n + 2, INT_MAX));
// 初始化第⼀⾏
for (int j = 0; j < n + 2; j++)
dp[0][j] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1])) + matrix[i - 1][j - 1];
int ret = INT_MAX;
for (int j = 1; j <= n; j++)
ret = min(ret, dp[n][j]);
return ret;
}
};
2.5 第五题
题目描述:
算法思路:
像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到
「不同路径」⼀类的题⾥⾯。
1. 状态表⽰:
dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。
2. 状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 到达 [i, j] 位置处的最⼩路径和,那么到达[i, j] 位置之前的⼀⼩步,有两种情况:
- 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
- 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。
由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。
5. 返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n] 。
代码呈现:
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回结果
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));
dp[0][1] = dp[1][0] = 0;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
return dp[m][n];
}
};
2.6 第六题
题目描述:
算法思想:
1. 状态表⽰:
这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。
- 那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。
- 这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。
2. 状态转移⽅程:
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[i][j] 的最终答案是 x ):
i. ⾛到右边,然后⾛向终点
- 那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。
- 通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
ii. ⾛到下边,然后⾛向终点
- 那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。
- 通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:
dp[i][j] = max(1, dp[i][j])
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- 「下标的映射关系」。
- 在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。
4. 填表顺序:
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
5. 返回值:
根据「状态表⽰」,我们需要返回 dp[0][0] 的值。
代码呈现:
class Solution {
public:
int calculateMinimumHP(vector<vector<int>>& dungeon)
{
int m = dungeon.size(), n = dungeon[0].size();
// 建表 + 初始化
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));
dp[m][n - 1] = dp[m - 1][n] = 1;
// 填表
for (int i = m - 1; i >= 0; i--)
for (int j = n - 1; j >= 0; j--)
{
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];
dp[i][j] = max(1, dp[i][j]);
}
// 返回结果
return dp[0][0];
}
};
三、结束语
今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。