3_机械臂位姿变换计算代码_2&aubo arcs sdk poseTrans 使用例子

1、aubo arcs sdk poseTrans 使用例子

先贴代码:

auto cur_pose = rpc_cli->getRobotInterface(robot_name)

            ->getRobotState()

            ->getTcpPose();

std::vectortarget_pose;

target_pose = {0, 0, 0.0, 0, 0.0, 1.0};

auto ready_pose_ = rpc_cli->getMath()

                       ->poseTrans(cur_pose, target_pose);

有了这部分代码,可以进一步说明与验证该接口。cur_pose是机械臂基于基坐标系的位置和姿态,毫米和弧度为单位,即p_from参数。对于target_pose参数,是对p_from进行的位置和姿态的变换,例子中target_pose表示位置不变,绕ry旋转1弧度。输出结果:

acd7d73a8481934e99735c99080a5bb1.png

后面姿态表示是欧拉角,旋转方向是ZYX。绕Z轴旋转,但是变的是ry。OK,现在我们有了方程的参考答案,接下来自己推导解算过程。

2、借助Eigen库计算位姿变换

先整理下条件,已知当前机械臂的欧拉角姿态和位置,还已知变换的位姿。但从《机器人学导论》中学到的只有表示位姿的4×4的齐次位姿矩阵,所以需要欧拉角转旋转矩阵。

// 初始化欧拉角(rpy),对应绕x轴,绕y轴,绕z轴的旋转角度
Eigen::Vector3d euler_angle(pose_from.at(3) * DEG_TO_ARC,
                            pose_from.at(4) * DEG_TO_ARC,
                            pose_from.at(5) * DEG_TO_ARC);
// 使用Eigen库将欧拉角转换为旋转矩阵
Eigen::Matrix3d rotation_matrix1;
rotation_matrix1 = Eigen::AngleAxisd(euler_angle[2], Eigen::Vector3d::UnitZ())*
                   Eigen::AngleAxisd(euler_angle[1], Eigen::Vector3d::UnitY())* 
                   Eigen::AngleAxisd(euler_angle[0], Eigen::Vector3d::UnitX());

上面转换也可以自己手写。

8f973f3a554c685c3a913d108ae3fccb.png

将位置与旋转矩阵姿态构造成齐次矩阵:  

Eigen::Matrix     <double,            </double,3, 4> m3x4_to;
Eigen::Matrix     <double,            </double,4, 4> m4x4_to;
Eigen::Matrix     <double,            </double,4, 4> m4x4_ret;


m3x4_to << rotation_matrix1_to, pos_to;
cout << "m3x4_to is :\n" << m3x4_to << std::endl;


m4x4_to << m3x4_to, homogeneous;
m4x4_ret = m4x4*m4x4_to;
cout << "m4x4_to is: \n" << m4x4_ret << std::endl;


Eigen::Matrix     <double,            </double,3, 3> m3x3_ret = m4x4_ret.block(0, 0, 3, 3);
cout << "m3x3_to ret is: \n" << m3x3_ret << std::endl;

将旋转矩阵变为欧拉角便于观察:

Eigen::Vector3d rotationMatrixToEulerAngles(Eigen::Matrix3d &R)
{
    assert(isRotationMatirx(R));
    double sy = sqrt(R(0,0) * R(0,0) + R(1,0) * R(1,0));
    bool singular = sy < 1e-6;
    double x, y, z;


    if (!singular){    
        x = atan2( R(2,1), R(2,2));
        y = atan2(-R(2,0), sy);
        z = atan2( R(1,0), R(0,0));
    }else{
        x = atan2(-R(1,2), R(1,1));
        y = atan2(-R(2,0), sy);
        z = 0;
    }


    return {x, y, z};
}

将上述组合,构建一个自己的myPoseTrans函数:

/**


 * @brief myPoseTrans


     * @param pose_from 起始位姿(空间向量)


     * @param pose_from_to 相对于起始位姿的姿态变化(空间向量)


     * @return 结果位姿 (空间向量)


 */


std::vectormyPoseTrans(const std::vector&pose_from,
                       const std::vector&pose_from_to)
{
    std::vector pose;
    // 初始化欧拉角(rpy),对应绕x轴,绕y轴,绕z轴的旋转角度
    Eigen::Vector3d euler_angle(pose_from.at(3) * DEG_TO_ARC,
                                pose_from.at(4) * DEG_TO_ARC,
                                pose_from.at(5) * DEG_TO_ARC);
          
    // 使用Eigen库将欧拉角转换为旋转矩阵
    Eigen::Matrix3d rotation_matrix1;
    rotation_matrix1 = Eigen::AngleAxisd(euler_angle[2], Eigen::Vector3d::UnitZ()) *
                       Eigen::AngleAxisd(euler_angle[1], Eigen::Vector3d::UnitY()) *
                       Eigen::AngleAxisd(euler_angle[0], Eigen::Vector3d::UnitX());    
         
    Eigen::MatrixXd pos(3,1);
    pos(0,0)= pose_from.at(0);
    pos(1,0)= pose_from.at(1);
    pos(2,0)= pose_from.at(2);
          
    Eigen::MatrixXd homogeneous(1,4);
    homogeneous(0,0)=0;
    homogeneous(0,1)=0;
    homogeneous(0,2)=0;
    homogeneous(0,3)=1;          


    Eigen::Matrix     <double,            </double,3, 4> m3x4;
    Eigen::Matrix     <double,            </double,4, 4> m4x4;


    m3x4 << rotation_matrix1, pos;
    cout << "m3x4 is :\n" << m3x4 << std::endl;// np.concatenate((a,b))


    m4x4 << m3x4, homogeneous;
    cout << "m4x4 is: \n" <


    Eigen::MatrixXd pos_to(3,1);
    pos_to(0,0)= pose_from_to.at(0);
    pos_to(1,0)= pose_from_to.at(1);
    pos_to(2,0)= pose_from_to.at(2);


    // 转化为弧度
    Eigen::Vector3d euler_angle_to(pose_from_to.at(3) * DEG_TO_ARC,
                                   pose_from_to.at(4) * DEG_TO_ARC,
                                   pose_from_to.at(5) * DEG_TO_ARC);    


    // 使用Eigen库将欧拉角转换为旋转矩阵
    Eigen::Matrix3d rotation_matrix1_to;
rotation_matrix1_to = Eigen::AngleAxisd(euler_angle_to[2], Eigen::Vector3d::UnitZ()) *
                      Eigen::AngleAxisd(euler_angle_to[1], Eigen::Vector3d::UnitY()) *    
                      Eigen::AngleAxisd(euler_angle_to[0], Eigen::Vector3d::UnitX());
          
    Eigen::Matrix     <double,            </double,3, 4> m3x4_to;
    Eigen::Matrix     <double,            </double,4, 4> m4x4_to;
    Eigen::Matrix     <double,            </double,4, 4> m4x4_ret;
 
    m3x4_to << rotation_matrix1_to, pos_to;
    cout << "m3x4_to is :\n" << m3x4_to << std::endl;// np.concatenate((a,b))


    m4x4_to << m3x4_to, homogeneous;
    m4x4_ret = m4x4*m4x4_to;


    cout << "m4x4_to is: \n" << m4x4_ret << std::endl;
    


    Eigen::Matrix     <double,            </double,3, 3> m3x3_ret = m4x4_ret.block(0, 0, 3, 3);
    cout << "m3x3_to ret is: \n" << m3x3_ret << std::endl;
         
    // 使用自定义函数将旋转矩阵转换为欧拉角
    Eigen::Vector3d eulerAngle2 = rotationMatrixToEulerAngles(m3x3_ret); // roll,pitch,yaw
    cout << "roll_2 pitch_2 yaw_2 = " << eulerAngle2[0] << " " << eulerAngle2[1]
         << " " << eulerAngle2[2] << endl << endl;


          


    pose.push_back(m4x4_ret(0,3));
    pose.push_back(m4x4_ret(1,3));
    pose.push_back(m4x4_ret(2,3));
    pose.push_back(eulerAngle2[0]*ARC_TO_DEG);
    pose.push_back(eulerAngle2[1]*ARC_TO_DEG);
    pose.push_back(eulerAngle2[2]*ARC_TO_DEG);  


    return pose;
}

我的计算结果:    

7b8900eb104f890063fefc6f781e181d.png

其他测试数据:

be33b3cdb4d5518a1a0bbe42394c77bf.png

257cd725573ef21f1d9a05cad37e98b5.png

调试中遇到的一个问题,rpy姿态{3.142,  0.0, 0.570796} 和

{-3.142,  0.0, 0.570796} 之间有怎样的关系?      

欢迎关注:

14c8da76f123b2f837021534e5fc8981.png

如需完整工程可在公众号后台留言“混合变换”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值