7_机械臂工作台坐标系理论_一般坐标系的映射_2

6fdfc6be7385a70a149d107ddcacb99e.jpeg

1、一般坐标系的映射

       经常有这种情况,我们已知矢量相对坐标系{B}的描述,并且想求出它相对于另一个坐标系{A}的描述。结合上次的理论和平时对机械臂使用的经验,使用3点法标定机械臂工作台坐标系(我习惯称为用户坐标系,下面称为用户坐标系),则是已知3点基于基坐标系的描述,求3点基于用户坐标系的描述,即用户坐标系相对基坐标系的描述。现在考虑映射的一般情况。此时,坐标系{B}的原点和坐标系{A}的原点不重合,有一个矢量偏移。确定{B}原点的矢量用db3cf0a0b084ed243e7e7629f379f7dc.png表示,同时{B}相对{A}的旋转用ce16c1f5700b92e3e10eb60f88feab1a.png描述。BP已知,求AP,如图2-7所示。

1cb030a89bf320ee4f0d949fca7e9cce.png

                           图2-7 在一般情况下的矢量变换

         首先将BP变换到一个中间坐标系,这个坐标系和{A}姿态相同,原点和{B}的原点重合。可以像之前那样由左乘矩阵得到。然后仍用简单的矢量加法将原点平移,并得到:

aa131f9b171944c386c1e26ecbd0a37c.png    

      式(2-17)表示将一个矢量描述从一个坐标系变换到另一个坐标系矢量的一般变换映射。注意式(2-17)中的符号:消去了B的符号,剩下了所有在A中的矢量符号,然后这些量才可以相加。

             由式(2-17)引出一个新的概念形式:

1adae43a029557584e230d72a82c995b.png

    即用一个矩阵形式的算子表示从一个坐标系到另一个坐标系的映射。这比式(2-17)表达更简洁,概念更明确。为了用式(2-18)的矩阵算子的形式写出式(2-17)的数学表达式,定义一个4×4的矩阵算子并使用了4×1位置矢量,这样式(2-18)就成为:

546b2d1c9cb3ecf47704aebc03b8c234.png

换言之:

1.在4×1矢量中增加的最后一个分量为“1”;

2.在4×4矩阵中增加的最后一行为“[0, 0, 0, 1]”

习惯上把位置矢量当成3×1或4×1的矢量,这取决于它是与3×3还是4×4 的矩阵相乘。容易看出式(2-19)可以写成:

ab0fd581c34675d0a5e7651e168997af.png

式(2-19)中的4×4矩阵被称为齐次变换矩阵。它完全可被看作是用一个简单的矩阵形式表示了一般变换的旋转和位移。在其他研究领域,它可以被用于进行投影和比例运算(当最后一行不是“[0, 0, 0, 1]”时或者旋转矩阵不是正交阵时)。

       正如用旋转矩阵定义姿态一样,我们将用变换(常用齐次变换)来定义一个坐标系。齐次变换仍可用于坐标系的描述,坐标系{B}相对于坐标系{A}的变换描述为a622556df321d3e63218d334ef81cbf6.png。  

欢迎关注:

47785378ed9a924ceed48d0fce068958.png

往期笔记:

6_工作台坐标系理论_向量叉积_1

5_机械臂工具位姿计算理论及代码实现验证

4_机械臂坐标系简介

3_机械臂位姿变换计算过程代码

4_机械臂位姿求逆理论及代码计算

1_机械臂位姿变换计算过程_1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值