几个基础数位DP (hdu 2089,hdu 3555 ,uestc 1307 windy 数)

转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove

做了几个非常基础的数位DP,很水。弱爆了,接下来要进行进阶训练了

HDU 2089 不要62

http://acm.hdu.edu.cn/showproblem.php?pid=2089

不能出现4,或者相邻的62,这题可以暴力打表解决

具体的在代码里都有解释

#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 55
#define inf 1<<29
#define MOD 9973
#define LL long long
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define equal(a,b) zero(a-b)
using namespace std;
int dp[10][3];
//dp[i][0],表示不存在不吉利数字
//dp[i][1],表示不存在不吉利数字,且最高位为2
//dp[i][2],表示存在不吉利数字
void Init(){
    memset(dp,0,sizeof(dp));
    dp[0][0]=1;
    for(int i=1;i<=6;i++){
        dp[i][0]=dp[i-1][0]*9-dp[i-1][1];  //在最高位加上除了4之外的9个数字,但是可能在2之前加了6
        dp[i][1]=dp[i-1][0];    //就是在原先不含不吉利数字的最高位加2
        dp[i][2]=dp[i-1][2]*10+dp[i-1][0]+dp[i-1][1];  //在已经有不吉利数字最高位加任意数字,或者在无吉利数字前加4,或者在2前面加4
    }
}
int slove(int n){
    int len=0,bit[10];
    int tmp=n;
    while(n){
        bit[++len]=n%10;
        n/=10;
    }
    bit[len+1]=0;
    int ans=0;
    bool flag=false;
    for(int i=len;i;i--){
        ans+=dp[i-1][2]*bit[i];  
        if(flag)   //高位已经出现4或者62,后面的就随意
            ans+=dp[i-1][0]*bit[i];
        if(!flag&&bit[i]>4)  //高位可能出现4的情况
            ans+=dp[i-1][0];
        if(!flag&&bit[i+1]==6&&bit[i]>2)  //高位是6,后面一位可能出现2,这步debug了很久
            ans+=dp[i][1];
        if(!flag&&bit[i]>6)  //高位可能出现6,要把后面最高位为2计入
            ans+=dp[i-1][1];
        if(bit[i]==4||(bit[i+1]==6&&bit[i]==2))  //高位已经出现4或者62
            flag=true;
    }
    return tmp-ans;
}
int main(){
    int l,r;
    Init();
    while(scanf("%d%d",&l,&r)!=EOF&&l+r)
        printf("%d\n",slove(r+1)-slove(l));
    return 0;
}


HDU 3555 BOMB

http://acm.hdu.edu.cn/showproblem.php?pid=3555

不能出现相邻的49,和上一题类似

#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 55
#define inf 1<<29
#define MOD 9973
#define LL long long
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define equal(a,b) zero(a-b)
using namespace std;
LL dp[21][3],n; 
int len,bit[21];
//dp[i][0]表示长度为i,包括49的个数
//dp[i][1]表示长度为i,没有49但是开头为9的个数
//dp[i][2]表示长度为i,没有49
void Init(){
    memset(dp,0,sizeof(dp));
    dp[0][2]=1;
    for(int i=1;i<20;i++){
        dp[i][0]=(LL)dp[i-1][0]*10+dp[i-1][1];
        dp[i][1]=dp[i-1][2];
        dp[i][2]=(LL)dp[i-1][2]*10-dp[i-1][1];
    }
}
int main(){
    Init();
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%I64d",&n);
        len=0;
        n++;
        while(n){
            bit[++len]=n%10;
            n/=10;
        }
        bit[len+1]=0;
        LL ans=0;
        bool flag=false;
        for(int i=len;i;i--){
            ans+=(LL)dp[i-1][0]*bit[i];
            if(flag)
                ans+=(LL)dp[i-1][2]*bit[i];
            if(!flag&&bit[i]>4)
                ans+=dp[i-1][1];
            if(bit[i]==9&&bit[i+1]==4)
                flag=true;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}


UESTC 1307 WINDY 数

http://acm.uestc.edu.cn/problem.php?pid=1307

要求相邻的数差大于等于2

#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 100005
#define inf 1<<29
#define MOD 9973
#define LL long long
#define eps 1e-7
#define zero(a) fabs(a)<eps
#define equal(a,b) zero(a-b)
using namespace std;
int dp[15][10];
//dp[i][j]表示考虑i位的数中,最高为j的windy数
void Init(){
	memset(dp,0,sizeof(dp));
	for(int i=0;i<=9;i++)
		dp[1][i]=1;
	for(int i=2;i<=10;i++){
		for(int j=0;j<10;j++){
			for(int k=0;k<10;k++)
				if(abs(j-k)>=2)
					dp[i][j]+=dp[i-1][k];
		}
	}
}
int slove(int n){
	int len=0,bit[15];
	while(n){
		bit[++len]=n%10;
		n/=10;
	}
	bit[len+1]=0;
	int ans=0;
	//先把长度为1至len-1计入
	for(int i=1;i<len;i++)
		for(int j=1;j<10;j++)
	    	ans+=dp[i][j];
	//确定最高位
	for(int j=1;j<bit[len];j++)
		ans+=dp[len][j];
	for(int i=len-1;i;i--){
		for(int j=0;j<bit[i];j++)
			if(abs(j-bit[i+1])>=2)
				ans+=dp[i][j];
		//如果高位已经出现非法,直接退出
		if(abs(bit[i]-bit[i+1])<2)
			break;
	}
	return ans;
}
int main(){
	Init();
	int l,r;
	while(scanf("%d%d",&l,&r)!=EOF)
		printf("%d\n",slove(r+1)-slove(l));
	return 0;
}









评论 17 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

ACM_cxlove

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值