Codeforces 960E Alternating Tree [树形DP]

本文介绍了一种使用树形动态规划解决特定路径问题的方法,该问题要求计算一棵树上所有奇数长度路径的累加值。通过定义状态转移方程,文章详细解释了如何递归地计算每个节点的贡献值。

题意:给你一棵树,每个节点有个value,定义一条路径的从u1开始到um的A(u1,um)为:

#include<stdio.h>
#include<vector>
#define mod 1000000007
using namespace std;
typedef long long ll;
vector<ll>vt[200005];
ll v[200005],dp[200005][2],num[200005][2],ans;
void dfs(ll u,ll fa)
{
    ll now=0;
    for(ll i=0;i<vt[u].size();i++)
    {
        ll to=vt[u][i];
        if(to==fa)continue;
        dfs(to,u);
        dp[u][0]=((dp[u][0]+dp[to][1]-num[to][1]*v[u]%mod)%mod+mod)%mod;
        dp[u][1]=((dp[u][1]+dp[to][0]+num[to][0]*v[u]%mod)%mod+mod)%mod;
        num[u][0]=(num[u][0]+num[to][1])%mod;
        num[u][1]=(num[u][1]+num[to][0])%mod;
    }
    for(ll i=0;i<vt[u].size();i++)
    {
        ll to=vt[u][i];
        if(to==fa)continue;
        if(num[to][0]!=0)now=((now+2*dp[to][0]*(num[u][1]-num[to][0])%mod+num[to][0]*(num[u][1]-num[to][0])*v[u]%mod)%mod+mod)%mod;
        if(num[to][1]!=0)now=((now+2*dp[to][1]*(num[u][0]-num[to][1])%mod-num[to][1]*(num[u][0]-num[to][1])*v[u]%mod)%mod+mod)%mod;
    }
    now=((now+dp[u][1]*2+v[u])%mod+mod)%mod;
	ans=(ans+now)%mod;
    dp[u][1]=((dp[u][1]+v[u])%mod+mod)%mod;
    num[u][1]=(num[u][1]+1)%mod;
}
int main()
{
    ll n;
    scanf("%lld",&n);
    for(ll i=1;i<=n;i++)
        scanf("%lld",&v[i]);
    for(ll i=0;i<n-1;i++)
    {
        ll u,v;
        scanf("%lld%lld",&u,&v);
        vt[u].push_back(v);
        vt[v].push_back(u);
    }
    dfs(1,1);
    printf("%lld\n",ans%mod);
}


求所有路径的A(u1,um)的总和。

题解:当路径的长度是偶数时,这条路从开始走到结尾,与其从结尾走到开始的贡献为0,所以我们只需要考虑奇数长度的路径,定义dp[u][2]表示当前节点子树中往上到当前节点i的长度为偶数的路的A(vuj,vui)的和,num[u][2]表示从子树往上到当前节点i奇数长度的路径与偶数长度的路径的个数。根据当前节点的dp值,我们可以知道一条通过当前节点的有效路径肯定是两边长度的奇偶性是一样的,于是只要统计出答案即可。

AC代码:


引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值