fibonacci数列的性质(ZOJ3707)

题目:Calculate Prime S

 

题意:

Define S[n] as the number of subsets of {1, 2, ...,n} that contain no consecutive integers. For eachS[n], if for alli (1 ≤i < n) gcd(S[i],

S[n]) is 1, we call thatS[n] as aPrime S. Additionally,S[1] is also a Prime S. For theKth minimumPrime S, we'd like to find the

minimum S[n] which is multiple ofX and not less than theKth minimumPrime S. Please tell us the corresponding (S[n] ÷X) modM.

 

fibonacci数列的性质:

1.gcd(fib(n),fib(m))=fib(gcd(n,m))

证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m时gcd(fib(n),fib(m))=gcd(fib(n-m),fib(m)),递归可

求gcd(fib(n),fib(m))=gcd(fib(k),fib(l)),最后k=l,不然继续递归。K是通过展转相减法求出,易证k=gcd(n,m),所以gcd(fib(n),fib(m))

=fib(gcd(n,m))。

 

2.如果fib(k)能被x整除,则fib(k*i)都可以被x整除。

3.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1

4.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)

5.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1

6.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)

7.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1

8.f(n+m)=f(n+1)·f(m)+f(n)*f(m-1)

9.[f(n)]^2=(-1)^(n-1)+f(n-1)·f(n+1)

10.f(2n-1)=[f(n)]^2-[f(n-2)]^2

11.3f(n)=f(n+2)+f(n-2)

12.f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]

 

还有一个结论:

计算(a/b)%c  其中b能整除a

如果b与c互素,则(a/b)%c=a*b^(phi(c)-1)%c

如果b与c不互素,则(a/b)%c=(a%bc)/b

对于b与c互素和不互素都有(a/b)%c=(a%bc)/b成立

 

#include <stdio.h>
#include <iostream>
#include <string.h>
#include <math.h>

using namespace std;
typedef long long LL;
const LL N=16000000;

LL p[N];
bool prime[N];
LL k=1;

void isprime()
{
    LL i,j;
    p[0]=1;
    memset(prime,true,sizeof(prime));
    for(i=2;i<N;i++)
    {
        if(prime[i])
        {
            p[k++]=i;
            for(j=i+i;j<N;j+=i)
            {
                prime[j]=false;
            }
        }
    }
    p[1]=3;p[2]=4;
}

typedef struct
{
    LL m[2][2];
}Matrix;

Matrix per={1,0,0,1};
Matrix a={1,1,1,0};

Matrix multi(Matrix a,Matrix b,LL MOD)
{
    Matrix c;
    LL i,j;
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            c.m[i][j]=0;
            for(k=0;k<2;k++)
            {
                c.m[i][j]+=a.m[i][k]*b.m[k][j];
                c.m[i][j]%=MOD;
            }
        }
    }
    return c;
}

Matrix matrix_mod(LL k,LL MOD)
{
    Matrix p=a,ans=per;
    while(k)
    {
        if(k&1)
        {
            ans=multi(ans,p,MOD);
            k--;
        }
        k>>=1;
        p=multi(p,p,MOD);
    }
    return ans;
}

int main()
{
    LL K,X,M,t,i,ret,r;
    isprime();
    scanf("%lld",&t);
    while(t--)
    {
        scanf("%lld%lld%lld",&K,&X,&M);
        Matrix ans;

        for(i=p[K];;i++)
        {
            ans=matrix_mod(i-1,X);
            if((ans.m[0][0]%X==0))
            {
                r=i;
                break;
            }
        }
        ans=matrix_mod(i-1,M*X);
        ret=ans.m[0][0]/X;
        printf("%lld\n",ret);
    }
    return 0;
}


 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值