题目:任意两点之间有多条路径,每一条路径上的最大权值是不一样的,in other words, 从一个点到另一个点,经过的所有的边中,权值最大的就是这条路径的最大权。
求,任意两点之间,左右路径中,最大权值最小的路径的最大权
心得:因为有多组操作,操作数最大可达到10000次,如果每次次操作前都dfs的话,一定是超时的,于是我想到了floyd算法。思想是对的,但是细节的想法出现了错误,于是我就想到可以先用dfs遍历所有的点,讲答案存到二维数组里面,但是这个方法超时了。因为最大是100个点,那么每个点都要dfs的话,那么数量非常大的。最后又回到了Floyd算法上,仔细地想了一下Floyd求最短路径的算法,主要是思想,往两点之间插入点,在求最短路径的时候,是如果插入一个点,使得(s,k)+(k, t)比远了s到t的路途短的话就插入进来,那么类似的
如果插入一个点,使得从s到t的最大权减小,那么就把这个点插入进来
所以,问题就是,怎么判断判断最大权减小:
第一,插入的这个点,一定是要满足从s到k的最大权小于从s到t的,并且从k到t也要小于(s,t),这样插入这个点之后,才使得最大权减小
第二,要保证插入之后,从(s, t)是最大权,那么一定要将(s,k)和(k,j)中大的那个的值赋给(s,t)
这是一个DP的思想
所以代码如下:
注意,最后map中存储的是从s到t的最小的最大权,和Floyd求最短路径算法是一样的
#include <cstdio>
#include <algorithm>
using namespace std;
const int inf = 1000000;
const int MAX = 105;
int C, S, Q;
int map[MAX][MAX];
int s, t;
int c1, c2, d;
void floyd() {
int i, j, k;
for ( k = 1; k <= C; ++k )
for ( i = 1; i <= C; ++i )
for ( j = 1; j <= C; ++j )
if ( i != j && i != k && j != k && map[i][k] < map[i][j] && map[k][j] < map[i][j] ) map[i][j] = max(map[i][k], map[k][j]);
}
int main()
{
int icase = 1;
bool f = false;
while ( scanf("%d%d%d", &C, &S, &Q) != EOF && !( C==0 && S==0 && Q==0 ) ) {
if ( f ) printf("\n");
f = true;
for ( int i = 0; i <= C; ++i )
for ( int j = 0; j <= C; ++j ) map[i][j] = inf;
for ( int i = 1; i <= S; ++i ) {
scanf("%d%d%d", &c1, &c2, &d);
map[c1][c2] = map[c2][c1] = d;
}
floyd();
printf("Case #%d\n", icase++);
for ( int i = 1; i <= Q; ++i ) {
scanf("%d%d", &s, &t);
if ( map[s][t] == inf ) printf("no path\n");
else printf("%d\n", map[s][t]);
}
}
}